ASTM E261 Standard Practice for Determining Neutron Fluence, Fluence Rate, and Spectra by Radioactivation Techniques
Данный раздел/документ содержится в продуктах:
- Техэксперт: Машиностроительный комплекс
- Картотека зарубежных и международных стандартов
- ASTM ISO/ASTM 51205 Standard Practice for Use of a Ceric-Cerous Sulfate Dosimetry System
- ASTM E666 Standard Practice for Calculating Absorbed Dose From Gamma or X Radiation
- ASTM E2450 Standard Practice for Application of CaF2(Mn) Thermoluminescence Dosimeters in Mixed Neutron-Photon Environments
- ASTM E666 Standard Practice for Calculating Absorbed Dose From Gamma or X Radiation
- ASTM D3082 Standard Test Method for Boron in Water
- ASTM D5810 Standard Guide for Spiking into Aqueous Samples
- ASTM D5996 Standard Test Method for Measuring Anionic Contaminants in High-Purity Water by On-Line Ion Chromatography
- ASTM D3864 Standard Guide for On-Line Monitoring Systems for Water Analysis
- ASTM E178 Standard Practice for Dealing With Outlying Observations
- ASTM ISO/ASTM 51205 Standard Practice for Use of a Ceric-Cerous Sulfate Dosimetry System
- ASTM E666 Standard Practice for Calculating Absorbed Dose From Gamma or X Radiation
- ASTM E2450 Standard Practice for Application of CaF2(Mn) Thermoluminescence Dosimeters in Mixed Neutron-Photon Environments
- ASTM E666 Standard Practice for Calculating Absorbed Dose From Gamma or X Radiation
- ASTM ISO/ASTM 51205 Standard Practice for Use of a Ceric-Cerous Sulfate Dosimetry System
- ASTM E178 Standard Practice for Dealing With Outlying Observations
- ASTM D3864 Standard Guide for On-Line Monitoring Systems for Water Analysis
- ASTM D5996 Standard Test Method for Measuring Anionic Contaminants in High-Purity Water by On-Line Ion Chromatography
- ASTM D5810 Standard Guide for Spiking into Aqueous Samples
- 13
- ASTM D3082 Standard Test Method for Boron in Water
- ASTM D5810 Standard Guide for Spiking into Aqueous Samples
- ASTM D5996 Standard Test Method for Measuring Anionic Contaminants in High-Purity Water by On-Line Ion Chromatography
- ASTM D3864 Standard Guide for On-Line Monitoring Systems for Water Analysis
- ASTM E178 Standard Practice for Dealing With Outlying Observations
- ASTM ISO/ASTM 51205 Standard Practice for Use of a Ceric-Cerous Sulfate Dosimetry System
- ASTM E666 Standard Practice for Calculating Absorbed Dose From Gamma or X Radiation
- ASTM E2450 Standard Practice for Application of CaF2(Mn) Thermoluminescence Dosimeters in Mixed Neutron-Photon Environments
- ASTM E666 Standard Practice for Calculating Absorbed Dose From Gamma or X Radiation
- ASTM ISO/ASTM 51205 Standard Practice for Use of a Ceric-Cerous Sulfate Dosimetry System
- ASTM E178 Standard Practice for Dealing With Outlying Observations
- ASTM D3864 Standard Guide for On-Line Monitoring Systems for Water Analysis
- ASTM D5996 Standard Test Method for Measuring Anionic Contaminants in High-Purity Water by On-Line Ion Chromatography
- ASTM D5810 Standard Guide for Spiking into Aqueous Samples
- 13.060
- ASTM D3082 Standard Test Method for Boron in Water
- ASTM D5810 Standard Guide for Spiking into Aqueous Samples
- ASTM D5996 Standard Test Method for Measuring Anionic Contaminants in High-Purity Water by On-Line Ion Chromatography
- ASTM D3864 Standard Guide for On-Line Monitoring Systems for Water Analysis
- ASTM E178 Standard Practice for Dealing With Outlying Observations
- ASTM ISO/ASTM 51205 Standard Practice for Use of a Ceric-Cerous Sulfate Dosimetry System
- ASTM E666 Standard Practice for Calculating Absorbed Dose From Gamma or X Radiation
- ASTM E2450 Standard Practice for Application of CaF2(Mn) Thermoluminescence Dosimeters in Mixed Neutron-Photon Environments
- ASTM E666 Standard Practice for Calculating Absorbed Dose From Gamma or X Radiation
- ASTM ISO/ASTM 51205 Standard Practice for Use of a Ceric-Cerous Sulfate Dosimetry System
- ASTM E178 Standard Practice for Dealing With Outlying Observations
- ASTM D3864 Standard Guide for On-Line Monitoring Systems for Water Analysis
- ASTM D5996 Standard Test Method for Measuring Anionic Contaminants in High-Purity Water by On-Line Ion Chromatography
- ASTM D5810 Standard Guide for Spiking into Aqueous Samples
- ASTM D3082 Standard Test Method for Boron in Water
- ASTM D3082 Standard Test Method for Boron in Water
- ASTM D5810 Standard Guide for Spiking into Aqueous Samples
- ASTM D5996 Standard Test Method for Measuring Anionic Contaminants in High-Purity Water by On-Line Ion Chromatography
- ASTM D3864 Standard Guide for On-Line Monitoring Systems for Water Analysis
- ASTM E178 Standard Practice for Dealing With Outlying Observations
- ASTM ISO/ASTM 51205 Standard Practice for Use of a Ceric-Cerous Sulfate Dosimetry System
- ASTM E666 Standard Practice for Calculating Absorbed Dose From Gamma or X Radiation
- ASTM E2450 Standard Practice for Application of CaF2(Mn) Thermoluminescence Dosimeters in Mixed Neutron-Photon Environments
- ASTM E666 Standard Practice for Calculating Absorbed Dose From Gamma or X Radiation
- ASTM ISO/ASTM 51205 Standard Practice for Use of a Ceric-Cerous Sulfate Dosimetry System
- ASTM E178 Standard Practice for Dealing With Outlying Observations
- ASTM D3864 Standard Guide for On-Line Monitoring Systems for Water Analysis
- ASTM D5996 Standard Test Method for Measuring Anionic Contaminants in High-Purity Water by On-Line Ion Chromatography
- ASTM D5996 Standard Test Method for Measuring Anionic Contaminants in High-Purity Water by On-Line Ion Chromatography
- ASTM D3864 Standard Guide for On-Line Monitoring Systems for Water Analysis
- ASTM E178 Standard Practice for Dealing With Outlying Observations
- ASTM ISO/ASTM 51205 Standard Practice for Use of a Ceric-Cerous Sulfate Dosimetry System
- ASTM E666 Standard Practice for Calculating Absorbed Dose From Gamma or X Radiation
- ASTM E2450 Standard Practice for Application of CaF2(Mn) Thermoluminescence Dosimeters in Mixed Neutron-Photon Environments
- ASTM E666 Standard Practice for Calculating Absorbed Dose From Gamma or X Radiation
- ASTM ISO/ASTM 51205 Standard Practice for Use of a Ceric-Cerous Sulfate Dosimetry System
- ASTM E178 Standard Practice for Dealing With Outlying Observations
- ASTM D3864 Standard Guide for On-Line Monitoring Systems for Water Analysis
- ASTM D3864 Standard Guide for On-Line Monitoring Systems for Water Analysis
- ASTM E178 Standard Practice for Dealing With Outlying Observations
- ASTM ISO/ASTM 51205 Standard Practice for Use of a Ceric-Cerous Sulfate Dosimetry System
- ASTM E666 Standard Practice for Calculating Absorbed Dose From Gamma or X Radiation
- ASTM E2450 Standard Practice for Application of CaF2(Mn) Thermoluminescence Dosimeters in Mixed Neutron-Photon Environments
- ASTM E666 Standard Practice for Calculating Absorbed Dose From Gamma or X Radiation
- ASTM ISO/ASTM 51205 Standard Practice for Use of a Ceric-Cerous Sulfate Dosimetry System
- ASTM E178 Standard Practice for Dealing With Outlying Observations
- ASTM E178 Standard Practice for Dealing With Outlying Observations
- ASTM ISO/ASTM 51205 Standard Practice for Use of a Ceric-Cerous Sulfate Dosimetry System
- ASTM E666 Standard Practice for Calculating Absorbed Dose From Gamma or X Radiation
- ASTM E2450 Standard Practice for Application of CaF2(Mn) Thermoluminescence Dosimeters in Mixed Neutron-Photon Environments
- ASTM E666 Standard Practice for Calculating Absorbed Dose From Gamma or X Radiation
- ASTM ISO/ASTM 51205 Standard Practice for Use of a Ceric-Cerous Sulfate Dosimetry System
- ASTM E666 Standard Practice for Calculating Absorbed Dose From Gamma or X Radiation
- ASTM E2450 Standard Practice for Application of CaF2(Mn) Thermoluminescence Dosimeters in Mixed Neutron-Photon Environments
- ASTM E2450 Standard Practice for Application of CaF2(Mn) Thermoluminescence Dosimeters in Mixed Neutron-Photon Environments
- ASTM F1190 Standard Guide for Neutron Irradiation of Unbiased Electronic Components
- ASTM E668 Standard Practice for Application of Thermoluminescence-Dosimetry (TLD) Systems for Determining Absorbed Dose in Radiation-Hardness Testing of Electronic Devices
- ASTM E1854 Standard Practice for Ensuring Test Consistency in Neutron-Induced Displacement Damage of Electronic Parts
- ASTM E1018 Standard Guide for Application of ASTM Evaluated Cross Section Data File, Matrix E706 (IIB)
- ASTM ISO/ASTM 51205 Standard Practice for Use of a Ceric-Cerous Sulfate Dosimetry System
- Картотека зарубежных и международных стандартов
ASTM International
Standard Practice for Determining Neutron Fluence, Fluence Rate, and Spectra by Radioactivation Techniques
N E261
Annotation
This practice describes procedures for the determination of neutron fluence rate, fluence, and energy spectra from the radioactivity that is induced in a detector specimen.
The practice is directed toward the determination of these quantities in connection with radiation effects on materials.
For application of these techniques to reactor vessel surveillance, see also Test Methods E1005.
This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
NOTE 1—Detailed methods for individual detectors are given in the following ASTM test methods: E262, E263, E264, E265, E266, E343, E393, E481, E523, E526, E704, E705, and E854.
Автоматический перевод:
Утвержденный технологический процесс для определения нейтронного флюенса, темпа флюенса и спектров методами радиоактивации
Эта практика описывает процедуры для определения нейтронного уровня флюенса, флюенса и энергетических спектров от радиоактивности, которая вызвана в экземпляре детектора.



