0 продуктов

Авторизация

ASTM E1005 Standard Test Method for Application and Analysis of Radiometric Monitors for Reactor Vessel Surveillance

Список продуктов
Данный раздел/документ содержится в продуктах:

 

ASTM International

Standard Test Method for Application and Analysis of Radiometric Monitors for Reactor Vessel Surveillance
 N E1005

 

Annotation

 

This test method describes procedures for measuring the specific activities of radioactive nuclides produced in radiometric monitors (RMs) by nuclear reactions induced during surveillance exposures for reactor vessels and support structures. More detailed procedures for individual RMs are provided in separate standards identified in 2.1 and in Refs (1-5).2 The measurement results can be used to define corresponding neutron induced reaction rates that can in turn be used to characterize the irradiation environment of the reactor vessel and support structure. The principal measurement technique is high resolution gamma-ray spectrometry, although X-ray photon spectrometry and Beta particle counting are used to a lesser degree for specific RMs (1-29).

The measurement procedures include corrections for detector background radiation, random and true coincidence summing losses, differences in geometry between calibration source standards and the RMs, self absorption of radiation by the RM, other absorption effects, radioactive decay corrections, and burn out of the nuclide of interest (6-26).

Specific activities are calculated by taking into account the time duration of the count, the elapsed time between start of count and the end of the irradiation, the half life, the mass of the target nuclide in the RM, and the branching intensities of the radiation of interest. Using the appropriate half life and known conditions of the irradiation, the specific activities may be converted into corresponding reaction rates (2-5,28-30).

Procedures for calculation of reaction rates from the radioactivity measurements and the irradiation power time history are included. A reaction rate can be converted to neutron fluence rate and fluence using the appropriate integral cross section and effective irradiation time values, and, with other reaction rates can be used to define the neutron spectrum through the use of suitable computer programs (2-5,28-30).

Категории продуктов

 

 

 

Знакомьтесь, "Техэксперт"

 Техэксперт для iPad

 Для Android

АКЦИЯ!

Бесплатный доступ