ASTM E2059 Standard Practice for Application and Analysis of Nuclear Research Emulsions for Fast Neutron Dosimetry
Данный раздел/документ содержится в продуктах:
- Техэксперт: Машиностроительный комплекс
- Картотека зарубежных и международных стандартов
- ASTM ISO/ASTM 51205 Standard Practice for Use of a Ceric-Cerous Sulfate Dosimetry System
- ASTM E666 Standard Practice for Calculating Absorbed Dose From Gamma or X Radiation
- ASTM E2450 Standard Practice for Application of CaF2(Mn) Thermoluminescence Dosimeters in Mixed Neutron-Photon Environments
- ASTM F1190 Standard Guide for Neutron Irradiation of Unbiased Electronic Components
- ASTM E668 Standard Practice for Application of Thermoluminescence-Dosimetry (TLD) Systems for Determining Absorbed Dose in Radiation-Hardness Testing of Electronic Devices
- ASTM F1190 Standard Guide for Neutron Irradiation of Unbiased Electronic Components
- ASTM E2450 Standard Practice for Application of CaF2(Mn) Thermoluminescence Dosimeters in Mixed Neutron-Photon Environments
- ASTM E666 Standard Practice for Calculating Absorbed Dose From Gamma or X Radiation
- ASTM D3082 Standard Test Method for Boron in Water
- ASTM D5810 Standard Guide for Spiking into Aqueous Samples
- ASTM D5996 Standard Test Method for Measuring Anionic Contaminants in High-Purity Water by On-Line Ion Chromatography
- ASTM D3864 Standard Guide for On-Line Monitoring Systems for Water Analysis
- ASTM E178 Standard Practice for Dealing With Outlying Observations
- ASTM ISO/ASTM 51205 Standard Practice for Use of a Ceric-Cerous Sulfate Dosimetry System
- ASTM E666 Standard Practice for Calculating Absorbed Dose From Gamma or X Radiation
- ASTM E2450 Standard Practice for Application of CaF2(Mn) Thermoluminescence Dosimeters in Mixed Neutron-Photon Environments
- ASTM F1190 Standard Guide for Neutron Irradiation of Unbiased Electronic Components
- ASTM E668 Standard Practice for Application of Thermoluminescence-Dosimetry (TLD) Systems for Determining Absorbed Dose in Radiation-Hardness Testing of Electronic Devices
- ASTM F1190 Standard Guide for Neutron Irradiation of Unbiased Electronic Components
- ASTM E2450 Standard Practice for Application of CaF2(Mn) Thermoluminescence Dosimeters in Mixed Neutron-Photon Environments
- ASTM E666 Standard Practice for Calculating Absorbed Dose From Gamma or X Radiation
- ASTM ISO/ASTM 51205 Standard Practice for Use of a Ceric-Cerous Sulfate Dosimetry System
- ASTM E178 Standard Practice for Dealing With Outlying Observations
- ASTM D3864 Standard Guide for On-Line Monitoring Systems for Water Analysis
- ASTM D5996 Standard Test Method for Measuring Anionic Contaminants in High-Purity Water by On-Line Ion Chromatography
- ASTM D5810 Standard Guide for Spiking into Aqueous Samples
- 13
- ASTM D3082 Standard Test Method for Boron in Water
- ASTM D5810 Standard Guide for Spiking into Aqueous Samples
- ASTM D5996 Standard Test Method for Measuring Anionic Contaminants in High-Purity Water by On-Line Ion Chromatography
- ASTM D3864 Standard Guide for On-Line Monitoring Systems for Water Analysis
- ASTM E178 Standard Practice for Dealing With Outlying Observations
- ASTM ISO/ASTM 51205 Standard Practice for Use of a Ceric-Cerous Sulfate Dosimetry System
- ASTM E666 Standard Practice for Calculating Absorbed Dose From Gamma or X Radiation
- ASTM E2450 Standard Practice for Application of CaF2(Mn) Thermoluminescence Dosimeters in Mixed Neutron-Photon Environments
- ASTM F1190 Standard Guide for Neutron Irradiation of Unbiased Electronic Components
- ASTM E668 Standard Practice for Application of Thermoluminescence-Dosimetry (TLD) Systems for Determining Absorbed Dose in Radiation-Hardness Testing of Electronic Devices
- ASTM F1190 Standard Guide for Neutron Irradiation of Unbiased Electronic Components
- ASTM E2450 Standard Practice for Application of CaF2(Mn) Thermoluminescence Dosimeters in Mixed Neutron-Photon Environments
- ASTM E666 Standard Practice for Calculating Absorbed Dose From Gamma or X Radiation
- ASTM ISO/ASTM 51205 Standard Practice for Use of a Ceric-Cerous Sulfate Dosimetry System
- ASTM E178 Standard Practice for Dealing With Outlying Observations
- ASTM D3864 Standard Guide for On-Line Monitoring Systems for Water Analysis
- ASTM D5996 Standard Test Method for Measuring Anionic Contaminants in High-Purity Water by On-Line Ion Chromatography
- ASTM D5810 Standard Guide for Spiking into Aqueous Samples
- ASTM D3082 Standard Test Method for Boron in Water
- ASTM D5810 Standard Guide for Spiking into Aqueous Samples
- ASTM D5996 Standard Test Method for Measuring Anionic Contaminants in High-Purity Water by On-Line Ion Chromatography
- ASTM D3864 Standard Guide for On-Line Monitoring Systems for Water Analysis
- ASTM E178 Standard Practice for Dealing With Outlying Observations
- ASTM ISO/ASTM 51205 Standard Practice for Use of a Ceric-Cerous Sulfate Dosimetry System
- ASTM E666 Standard Practice for Calculating Absorbed Dose From Gamma or X Radiation
- ASTM E2450 Standard Practice for Application of CaF2(Mn) Thermoluminescence Dosimeters in Mixed Neutron-Photon Environments
- ASTM F1190 Standard Guide for Neutron Irradiation of Unbiased Electronic Components
- ASTM E668 Standard Practice for Application of Thermoluminescence-Dosimetry (TLD) Systems for Determining Absorbed Dose in Radiation-Hardness Testing of Electronic Devices
- ASTM F1190 Standard Guide for Neutron Irradiation of Unbiased Electronic Components
- ASTM E2450 Standard Practice for Application of CaF2(Mn) Thermoluminescence Dosimeters in Mixed Neutron-Photon Environments
- ASTM E666 Standard Practice for Calculating Absorbed Dose From Gamma or X Radiation
- ASTM ISO/ASTM 51205 Standard Practice for Use of a Ceric-Cerous Sulfate Dosimetry System
- ASTM E178 Standard Practice for Dealing With Outlying Observations
- ASTM D3864 Standard Guide for On-Line Monitoring Systems for Water Analysis
- ASTM D5996 Standard Test Method for Measuring Anionic Contaminants in High-Purity Water by On-Line Ion Chromatography
- ASTM D5996 Standard Test Method for Measuring Anionic Contaminants in High-Purity Water by On-Line Ion Chromatography
- ASTM D3864 Standard Guide for On-Line Monitoring Systems for Water Analysis
- ASTM E178 Standard Practice for Dealing With Outlying Observations
- ASTM ISO/ASTM 51205 Standard Practice for Use of a Ceric-Cerous Sulfate Dosimetry System
- ASTM E666 Standard Practice for Calculating Absorbed Dose From Gamma or X Radiation
- ASTM E2450 Standard Practice for Application of CaF2(Mn) Thermoluminescence Dosimeters in Mixed Neutron-Photon Environments
- ASTM F1190 Standard Guide for Neutron Irradiation of Unbiased Electronic Components
- ASTM E668 Standard Practice for Application of Thermoluminescence-Dosimetry (TLD) Systems for Determining Absorbed Dose in Radiation-Hardness Testing of Electronic Devices
- ASTM F1190 Standard Guide for Neutron Irradiation of Unbiased Electronic Components
- ASTM E2450 Standard Practice for Application of CaF2(Mn) Thermoluminescence Dosimeters in Mixed Neutron-Photon Environments
- ASTM E666 Standard Practice for Calculating Absorbed Dose From Gamma or X Radiation
- ASTM ISO/ASTM 51205 Standard Practice for Use of a Ceric-Cerous Sulfate Dosimetry System
- ASTM E178 Standard Practice for Dealing With Outlying Observations
- ASTM D3864 Standard Guide for On-Line Monitoring Systems for Water Analysis
- ASTM D3864 Standard Guide for On-Line Monitoring Systems for Water Analysis
- ASTM E178 Standard Practice for Dealing With Outlying Observations
- ASTM ISO/ASTM 51205 Standard Practice for Use of a Ceric-Cerous Sulfate Dosimetry System
- ASTM E666 Standard Practice for Calculating Absorbed Dose From Gamma or X Radiation
- ASTM E2450 Standard Practice for Application of CaF2(Mn) Thermoluminescence Dosimeters in Mixed Neutron-Photon Environments
- ASTM F1190 Standard Guide for Neutron Irradiation of Unbiased Electronic Components
- ASTM E668 Standard Practice for Application of Thermoluminescence-Dosimetry (TLD) Systems for Determining Absorbed Dose in Radiation-Hardness Testing of Electronic Devices
- ASTM F1190 Standard Guide for Neutron Irradiation of Unbiased Electronic Components
- ASTM E2450 Standard Practice for Application of CaF2(Mn) Thermoluminescence Dosimeters in Mixed Neutron-Photon Environments
- ASTM E666 Standard Practice for Calculating Absorbed Dose From Gamma or X Radiation
- ASTM ISO/ASTM 51205 Standard Practice for Use of a Ceric-Cerous Sulfate Dosimetry System
- ASTM E178 Standard Practice for Dealing With Outlying Observations
- ASTM E178 Standard Practice for Dealing With Outlying Observations
- ASTM ISO/ASTM 51205 Standard Practice for Use of a Ceric-Cerous Sulfate Dosimetry System
- ASTM E666 Standard Practice for Calculating Absorbed Dose From Gamma or X Radiation
- ASTM E2450 Standard Practice for Application of CaF2(Mn) Thermoluminescence Dosimeters in Mixed Neutron-Photon Environments
- ASTM F1190 Standard Guide for Neutron Irradiation of Unbiased Electronic Components
- ASTM E668 Standard Practice for Application of Thermoluminescence-Dosimetry (TLD) Systems for Determining Absorbed Dose in Radiation-Hardness Testing of Electronic Devices
- ASTM F1190 Standard Guide for Neutron Irradiation of Unbiased Electronic Components
- ASTM E2450 Standard Practice for Application of CaF2(Mn) Thermoluminescence Dosimeters in Mixed Neutron-Photon Environments
- ASTM E666 Standard Practice for Calculating Absorbed Dose From Gamma or X Radiation
- ASTM ISO/ASTM 51205 Standard Practice for Use of a Ceric-Cerous Sulfate Dosimetry System
- ASTM E666 Standard Practice for Calculating Absorbed Dose From Gamma or X Radiation
- ASTM E2450 Standard Practice for Application of CaF2(Mn) Thermoluminescence Dosimeters in Mixed Neutron-Photon Environments
- ASTM F1190 Standard Guide for Neutron Irradiation of Unbiased Electronic Components
- ASTM E668 Standard Practice for Application of Thermoluminescence-Dosimetry (TLD) Systems for Determining Absorbed Dose in Radiation-Hardness Testing of Electronic Devices
- ASTM F1190 Standard Guide for Neutron Irradiation of Unbiased Electronic Components
- ASTM E2450 Standard Practice for Application of CaF2(Mn) Thermoluminescence Dosimeters in Mixed Neutron-Photon Environments
- ASTM E2450 Standard Practice for Application of CaF2(Mn) Thermoluminescence Dosimeters in Mixed Neutron-Photon Environments
- ASTM F1190 Standard Guide for Neutron Irradiation of Unbiased Electronic Components
- ASTM E668 Standard Practice for Application of Thermoluminescence-Dosimetry (TLD) Systems for Determining Absorbed Dose in Radiation-Hardness Testing of Electronic Devices
- ASTM F1190 Standard Guide for Neutron Irradiation of Unbiased Electronic Components
- ASTM F1190 Standard Guide for Neutron Irradiation of Unbiased Electronic Components
- ASTM E668 Standard Practice for Application of Thermoluminescence-Dosimetry (TLD) Systems for Determining Absorbed Dose in Radiation-Hardness Testing of Electronic Devices
- ASTM E668 Standard Practice for Application of Thermoluminescence-Dosimetry (TLD) Systems for Determining Absorbed Dose in Radiation-Hardness Testing of Electronic Devices
- ASTM E1854 Standard Practice for Ensuring Test Consistency in Neutron-Induced Displacement Damage of Electronic Parts
- ASTM E1018 Standard Guide for Application of ASTM Evaluated Cross Section Data File, Matrix E706 (IIB)
- ASTM E266 Standard Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Aluminum
- ASTM E1005 Standard Test Method for Application and Analysis of Radiometric Monitors for Reactor Vessel Surveillance
- ASTM ISO/ASTM 51205 Standard Practice for Use of a Ceric-Cerous Sulfate Dosimetry System
- Картотека зарубежных и международных стандартов
ASTM International
Standard Practice for Application and Analysis of Nuclear Research Emulsions for Fast Neutron Dosimetry
N E2059
Annotation
Nuclear Research Emulsions (NRE) have a long and illustrious history of applications in the physical sciences, earth sciences and biological sciences (1,2)2. In the physical sciences, NRE experiments have led to many fundamental discoveries in such diverse disciplines as nuclear physics, cosmic ray physics and high energy physics. In the applied physical sciences, NRE have been used in neutron physics experiments in both fission and fusion reactor environments (3-6). Numerous NRE neutron experiments can be found in other applied disciplines, such as nuclear engineering, environmental monitoring and health physics. Given the breadth of NRE applications, there exist many textbooks and handbooks that provide considerable detail on the techniques used in the NRE method. As a consequence, this practice will be restricted to the application of the NRE method for neutron measurements in reactor physics and nuclear engineering with particular emphasis on neutron dosimetry in benchmark fields.
NRE are passive detectors and provide time integrated reaction rates. As a consequence, NRE provide fluence measurements without the need for time-dependent corrections, such as arise with radiometric (RM) dosimeters. NRE provide permanent records, so that optical microscopy observations can be carried out any time after exposure. If necessary, NRE measurements can be repeated at any time to examine questionable data or to obtain refined results.
Since NRE measurements are conducted with optical microscopes, high spatial resolution is afforded for fine structure experiments. The attribute of high spatial resolution can also be used to determine information on the angular anisotropy of the in-situ neutron field (4,5,7). It is not possible for active detectors to provide such data because of in-situ perturbations and finite-size effects.



