ASTM E170 Standard Terminology Relating to Radiation Measurements and Dosimetry
Данный раздел/документ содержится в продуктах:
- Техэксперт: Машиностроительный комплекс
- Картотека зарубежных и международных стандартов
- ASTM ISO/ASTM 51205 Standard Practice for Use of a Ceric-Cerous Sulfate Dosimetry System
- ASTM E666 Standard Practice for Calculating Absorbed Dose From Gamma or X Radiation
- ASTM E2450 Standard Practice for Application of CaF2(Mn) Thermoluminescence Dosimeters in Mixed Neutron-Photon Environments
- ASTM F1190 Standard Guide for Neutron Irradiation of Unbiased Electronic Components
- ASTM E2450 Standard Practice for Application of CaF2(Mn) Thermoluminescence Dosimeters in Mixed Neutron-Photon Environments
- ASTM E666 Standard Practice for Calculating Absorbed Dose From Gamma or X Radiation
- ASTM D3082 Standard Test Method for Boron in Water
- ASTM D5810 Standard Guide for Spiking into Aqueous Samples
- ASTM D5996 Standard Test Method for Measuring Anionic Contaminants in High-Purity Water by On-Line Ion Chromatography
- ASTM D3864 Standard Guide for On-Line Monitoring Systems for Water Analysis
- ASTM E178 Standard Practice for Dealing With Outlying Observations
- ASTM ISO/ASTM 51205 Standard Practice for Use of a Ceric-Cerous Sulfate Dosimetry System
- ASTM E666 Standard Practice for Calculating Absorbed Dose From Gamma or X Radiation
- ASTM E2450 Standard Practice for Application of CaF2(Mn) Thermoluminescence Dosimeters in Mixed Neutron-Photon Environments
- ASTM F1190 Standard Guide for Neutron Irradiation of Unbiased Electronic Components
- ASTM E2450 Standard Practice for Application of CaF2(Mn) Thermoluminescence Dosimeters in Mixed Neutron-Photon Environments
- ASTM E666 Standard Practice for Calculating Absorbed Dose From Gamma or X Radiation
- ASTM ISO/ASTM 51205 Standard Practice for Use of a Ceric-Cerous Sulfate Dosimetry System
- ASTM E178 Standard Practice for Dealing With Outlying Observations
- ASTM D3864 Standard Guide for On-Line Monitoring Systems for Water Analysis
- ASTM D5996 Standard Test Method for Measuring Anionic Contaminants in High-Purity Water by On-Line Ion Chromatography
- ASTM D5810 Standard Guide for Spiking into Aqueous Samples
- 13
- ASTM D3082 Standard Test Method for Boron in Water
- ASTM D5810 Standard Guide for Spiking into Aqueous Samples
- ASTM D5996 Standard Test Method for Measuring Anionic Contaminants in High-Purity Water by On-Line Ion Chromatography
- ASTM D3864 Standard Guide for On-Line Monitoring Systems for Water Analysis
- ASTM E178 Standard Practice for Dealing With Outlying Observations
- ASTM ISO/ASTM 51205 Standard Practice for Use of a Ceric-Cerous Sulfate Dosimetry System
- ASTM E666 Standard Practice for Calculating Absorbed Dose From Gamma or X Radiation
- ASTM E2450 Standard Practice for Application of CaF2(Mn) Thermoluminescence Dosimeters in Mixed Neutron-Photon Environments
- ASTM F1190 Standard Guide for Neutron Irradiation of Unbiased Electronic Components
- ASTM E2450 Standard Practice for Application of CaF2(Mn) Thermoluminescence Dosimeters in Mixed Neutron-Photon Environments
- ASTM E666 Standard Practice for Calculating Absorbed Dose From Gamma or X Radiation
- ASTM ISO/ASTM 51205 Standard Practice for Use of a Ceric-Cerous Sulfate Dosimetry System
- ASTM E178 Standard Practice for Dealing With Outlying Observations
- ASTM D3864 Standard Guide for On-Line Monitoring Systems for Water Analysis
- ASTM D5996 Standard Test Method for Measuring Anionic Contaminants in High-Purity Water by On-Line Ion Chromatography
- ASTM D5810 Standard Guide for Spiking into Aqueous Samples
- 13.060
- ASTM D3082 Standard Test Method for Boron in Water
- ASTM D5810 Standard Guide for Spiking into Aqueous Samples
- ASTM D5996 Standard Test Method for Measuring Anionic Contaminants in High-Purity Water by On-Line Ion Chromatography
- ASTM D3864 Standard Guide for On-Line Monitoring Systems for Water Analysis
- ASTM E178 Standard Practice for Dealing With Outlying Observations
- ASTM ISO/ASTM 51205 Standard Practice for Use of a Ceric-Cerous Sulfate Dosimetry System
- ASTM E666 Standard Practice for Calculating Absorbed Dose From Gamma or X Radiation
- ASTM E2450 Standard Practice for Application of CaF2(Mn) Thermoluminescence Dosimeters in Mixed Neutron-Photon Environments
- ASTM F1190 Standard Guide for Neutron Irradiation of Unbiased Electronic Components
- ASTM E2450 Standard Practice for Application of CaF2(Mn) Thermoluminescence Dosimeters in Mixed Neutron-Photon Environments
- ASTM E666 Standard Practice for Calculating Absorbed Dose From Gamma or X Radiation
- ASTM ISO/ASTM 51205 Standard Practice for Use of a Ceric-Cerous Sulfate Dosimetry System
- ASTM E178 Standard Practice for Dealing With Outlying Observations
- ASTM D3864 Standard Guide for On-Line Monitoring Systems for Water Analysis
- ASTM D5996 Standard Test Method for Measuring Anionic Contaminants in High-Purity Water by On-Line Ion Chromatography
- ASTM D5810 Standard Guide for Spiking into Aqueous Samples
- ASTM D3082 Standard Test Method for Boron in Water
- ASTM D3082 Standard Test Method for Boron in Water
- ASTM D5810 Standard Guide for Spiking into Aqueous Samples
- ASTM D5996 Standard Test Method for Measuring Anionic Contaminants in High-Purity Water by On-Line Ion Chromatography
- ASTM D3864 Standard Guide for On-Line Monitoring Systems for Water Analysis
- ASTM E178 Standard Practice for Dealing With Outlying Observations
- ASTM ISO/ASTM 51205 Standard Practice for Use of a Ceric-Cerous Sulfate Dosimetry System
- ASTM E666 Standard Practice for Calculating Absorbed Dose From Gamma or X Radiation
- ASTM E2450 Standard Practice for Application of CaF2(Mn) Thermoluminescence Dosimeters in Mixed Neutron-Photon Environments
- ASTM F1190 Standard Guide for Neutron Irradiation of Unbiased Electronic Components
- ASTM E2450 Standard Practice for Application of CaF2(Mn) Thermoluminescence Dosimeters in Mixed Neutron-Photon Environments
- ASTM E666 Standard Practice for Calculating Absorbed Dose From Gamma or X Radiation
- ASTM ISO/ASTM 51205 Standard Practice for Use of a Ceric-Cerous Sulfate Dosimetry System
- ASTM E178 Standard Practice for Dealing With Outlying Observations
- ASTM D3864 Standard Guide for On-Line Monitoring Systems for Water Analysis
- ASTM D5996 Standard Test Method for Measuring Anionic Contaminants in High-Purity Water by On-Line Ion Chromatography
- ASTM D5996 Standard Test Method for Measuring Anionic Contaminants in High-Purity Water by On-Line Ion Chromatography
- ASTM D3864 Standard Guide for On-Line Monitoring Systems for Water Analysis
- ASTM E178 Standard Practice for Dealing With Outlying Observations
- ASTM ISO/ASTM 51205 Standard Practice for Use of a Ceric-Cerous Sulfate Dosimetry System
- ASTM E666 Standard Practice for Calculating Absorbed Dose From Gamma or X Radiation
- ASTM E2450 Standard Practice for Application of CaF2(Mn) Thermoluminescence Dosimeters in Mixed Neutron-Photon Environments
- ASTM F1190 Standard Guide for Neutron Irradiation of Unbiased Electronic Components
- ASTM E2450 Standard Practice for Application of CaF2(Mn) Thermoluminescence Dosimeters in Mixed Neutron-Photon Environments
- ASTM E666 Standard Practice for Calculating Absorbed Dose From Gamma or X Radiation
- ASTM ISO/ASTM 51205 Standard Practice for Use of a Ceric-Cerous Sulfate Dosimetry System
- ASTM E178 Standard Practice for Dealing With Outlying Observations
- ASTM D3864 Standard Guide for On-Line Monitoring Systems for Water Analysis
- ASTM D3864 Standard Guide for On-Line Monitoring Systems for Water Analysis
- ASTM E178 Standard Practice for Dealing With Outlying Observations
- ASTM ISO/ASTM 51205 Standard Practice for Use of a Ceric-Cerous Sulfate Dosimetry System
- ASTM E666 Standard Practice for Calculating Absorbed Dose From Gamma or X Radiation
- ASTM E2450 Standard Practice for Application of CaF2(Mn) Thermoluminescence Dosimeters in Mixed Neutron-Photon Environments
- ASTM F1190 Standard Guide for Neutron Irradiation of Unbiased Electronic Components
- ASTM E2450 Standard Practice for Application of CaF2(Mn) Thermoluminescence Dosimeters in Mixed Neutron-Photon Environments
- ASTM E666 Standard Practice for Calculating Absorbed Dose From Gamma or X Radiation
- ASTM ISO/ASTM 51205 Standard Practice for Use of a Ceric-Cerous Sulfate Dosimetry System
- ASTM E178 Standard Practice for Dealing With Outlying Observations
- ASTM E178 Standard Practice for Dealing With Outlying Observations
- ASTM ISO/ASTM 51205 Standard Practice for Use of a Ceric-Cerous Sulfate Dosimetry System
- ASTM E666 Standard Practice for Calculating Absorbed Dose From Gamma or X Radiation
- ASTM E2450 Standard Practice for Application of CaF2(Mn) Thermoluminescence Dosimeters in Mixed Neutron-Photon Environments
- ASTM F1190 Standard Guide for Neutron Irradiation of Unbiased Electronic Components
- ASTM E2450 Standard Practice for Application of CaF2(Mn) Thermoluminescence Dosimeters in Mixed Neutron-Photon Environments
- ASTM E666 Standard Practice for Calculating Absorbed Dose From Gamma or X Radiation
- ASTM ISO/ASTM 51205 Standard Practice for Use of a Ceric-Cerous Sulfate Dosimetry System
- ASTM E666 Standard Practice for Calculating Absorbed Dose From Gamma or X Radiation
- ASTM E2450 Standard Practice for Application of CaF2(Mn) Thermoluminescence Dosimeters in Mixed Neutron-Photon Environments
- ASTM F1190 Standard Guide for Neutron Irradiation of Unbiased Electronic Components
- ASTM E2450 Standard Practice for Application of CaF2(Mn) Thermoluminescence Dosimeters in Mixed Neutron-Photon Environments
- ASTM E2450 Standard Practice for Application of CaF2(Mn) Thermoluminescence Dosimeters in Mixed Neutron-Photon Environments
- ASTM F1190 Standard Guide for Neutron Irradiation of Unbiased Electronic Components
- ASTM F1190 Standard Guide for Neutron Irradiation of Unbiased Electronic Components
- ASTM E668 Standard Practice for Application of Thermoluminescence-Dosimetry (TLD) Systems for Determining Absorbed Dose in Radiation-Hardness Testing of Electronic Devices
- ASTM E1854 Standard Practice for Ensuring Test Consistency in Neutron-Induced Displacement Damage of Electronic Parts
- ASTM E1018 Standard Guide for Application of ASTM Evaluated Cross Section Data File, Matrix E706 (IIB)
- ASTM E266 Standard Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Aluminum
- ASTM ISO/ASTM 51205 Standard Practice for Use of a Ceric-Cerous Sulfate Dosimetry System
- Картотека зарубежных и международных стандартов
ASTM International
Standard Terminology Relating to Radiation Measurements and Dosimetry
N E170
Annotation
INTRODUCTION
This terminology generally covers terms that apply to radiation measurements and dosimetry associated with energy deposition and radiation effects, or damage, in materials caused by interactions by high-energy radiation fields. The common radiation fields considered are X-rays, gamma rays, electrons, alpha particles, neutrons, and mixtures of these fields. This treatment is not intended to be exhaustive but reflects special and common terms used in technology and applications of interest to Committee E10, as for example, in areas of radiation effects on components of nuclear power reactors, radiation hardness testing of electronics, and radiation processing of materials.
This terminology uses recommended definitions and concepts of quantities, with units, for radiation measurements as contained in the International Commission on Radiation Units and Measurements (ICRU) Report 85a on “Fundamental Quantities and Units for Ionizing Radiation,” October 2011.2 Those terms that are defined essentially according to the terminology of ICRU Report 85a will be followed by ICRU in parentheses. It should also be noted that the units for quantities used are the latest adopted according to the International System of Units (SI) which are contained in Appendix X1 as taken from a table in ICRU Report 85a.2 This terminology also uses recommended definitions of two JCGM documents,3 namely “International vocabulary of metrology” (VIM, 2012, unless indicated otherwise) and “Guide to the expression of uncertainty in measurement” (GUM, 2008). Those terms that are defined essentially according to the terminology of these documents will be followed by either VIM or GUM in parentheses.
A term is boldfaced when it is defined in this standard. For some terms, text in italics is used just before the definition to limit its field of application, for example, see activity.



