ASTM D5324 Standard Guide for Testing Water-Borne Architectural Coatings
Данный раздел/документ содержится в продуктах:
- Техэксперт: Машиностроительный комплекс
- Картотека зарубежных и международных стандартов
- ASTM C600 Standard Test Method of Thermal Shock Test on Glass Pipe
- ASTM E228 Standard Test Method for Linear Thermal Expansion of Solid Materials With a Push- Rod Dilatometer
- ASTM F29 Standard Specification for Dumet Wire for Glass-to-Metal Seal Applications
- ASTM F14 Standard Practice for Making and Testing Reference Glass-Metal Bead-Seal
- ASTM F218 Standard Test Method for Measuring Optical Retardation and Analyzing Stress in Glass
- ASTM F144 Standard Practice for Making Reference Glass-Metal Sandwich Seal and Testing for Expansion Characteristics by Polarimetric Methods
- ASTM F105 Standard Specification for Type 58 Borosilicate Sealing Glass
- ASTM F140 Standard Practice for Making Reference Glass-Metal Butt Seals and Testing for Expansion Characteristics by Polarimetric Methods
- ASTM F105 Standard Specification for Type 58 Borosilicate Sealing Glass
- ASTM F144 Standard Practice for Making Reference Glass-Metal Sandwich Seal and Testing for Expansion Characteristics by Polarimetric Methods
- ASTM F218 Standard Test Method for Measuring Optical Retardation and Analyzing Stress in Glass
- ASTM F14 Standard Practice for Making and Testing Reference Glass-Metal Bead-Seal
- ASTM F29 Standard Specification for Dumet Wire for Glass-to-Metal Seal Applications
- ASTM E228 Standard Test Method for Linear Thermal Expansion of Solid Materials With a Push- Rod Dilatometer
- 23
- ASTM C600 Standard Test Method of Thermal Shock Test on Glass Pipe
- ASTM E228 Standard Test Method for Linear Thermal Expansion of Solid Materials With a Push- Rod Dilatometer
- ASTM F29 Standard Specification for Dumet Wire for Glass-to-Metal Seal Applications
- ASTM F14 Standard Practice for Making and Testing Reference Glass-Metal Bead-Seal
- ASTM F218 Standard Test Method for Measuring Optical Retardation and Analyzing Stress in Glass
- ASTM F144 Standard Practice for Making Reference Glass-Metal Sandwich Seal and Testing for Expansion Characteristics by Polarimetric Methods
- ASTM F105 Standard Specification for Type 58 Borosilicate Sealing Glass
- ASTM F140 Standard Practice for Making Reference Glass-Metal Butt Seals and Testing for Expansion Characteristics by Polarimetric Methods
- ASTM F105 Standard Specification for Type 58 Borosilicate Sealing Glass
- ASTM F144 Standard Practice for Making Reference Glass-Metal Sandwich Seal and Testing for Expansion Characteristics by Polarimetric Methods
- ASTM F218 Standard Test Method for Measuring Optical Retardation and Analyzing Stress in Glass
- ASTM F14 Standard Practice for Making and Testing Reference Glass-Metal Bead-Seal
- ASTM F29 Standard Specification for Dumet Wire for Glass-to-Metal Seal Applications
- ASTM E228 Standard Test Method for Linear Thermal Expansion of Solid Materials With a Push- Rod Dilatometer
- ASTM C600 Standard Test Method of Thermal Shock Test on Glass Pipe
- ASTM D7542 Standard Test Method for Air Oxidation of Carbon and Graphite in the Kinetic Regime
- ASTM C1793 Standard Guide for Development of Specifications for Fiber Reinforced Silicon Carbide-Silicon Carbide Composite Structures for Nuclear Applications
- ASTM E228 Standard Test Method for Linear Thermal Expansion of Solid Materials With a Push- Rod Dilatometer
- ASTM F29 Standard Specification for Dumet Wire for Glass-to-Metal Seal Applications
- ASTM F14 Standard Practice for Making and Testing Reference Glass-Metal Bead-Seal
- ASTM F218 Standard Test Method for Measuring Optical Retardation and Analyzing Stress in Glass
- ASTM F144 Standard Practice for Making Reference Glass-Metal Sandwich Seal and Testing for Expansion Characteristics by Polarimetric Methods
- ASTM F105 Standard Specification for Type 58 Borosilicate Sealing Glass
- ASTM F140 Standard Practice for Making Reference Glass-Metal Butt Seals and Testing for Expansion Characteristics by Polarimetric Methods
- ASTM F105 Standard Specification for Type 58 Borosilicate Sealing Glass
- ASTM F144 Standard Practice for Making Reference Glass-Metal Sandwich Seal and Testing for Expansion Characteristics by Polarimetric Methods
- ASTM F218 Standard Test Method for Measuring Optical Retardation and Analyzing Stress in Glass
- ASTM F14 Standard Practice for Making and Testing Reference Glass-Metal Bead-Seal
- ASTM F29 Standard Specification for Dumet Wire for Glass-to-Metal Seal Applications
- ASTM E228 Standard Test Method for Linear Thermal Expansion of Solid Materials With a Push- Rod Dilatometer
- ASTM C1793 Standard Guide for Development of Specifications for Fiber Reinforced Silicon Carbide-Silicon Carbide Composite Structures for Nuclear Applications
- ASTM C1793 Standard Guide for Development of Specifications for Fiber Reinforced Silicon Carbide-Silicon Carbide Composite Structures for Nuclear Applications
- ASTM E228 Standard Test Method for Linear Thermal Expansion of Solid Materials With a Push- Rod Dilatometer
- ASTM F29 Standard Specification for Dumet Wire for Glass-to-Metal Seal Applications
- ASTM F14 Standard Practice for Making and Testing Reference Glass-Metal Bead-Seal
- ASTM F218 Standard Test Method for Measuring Optical Retardation and Analyzing Stress in Glass
- ASTM F144 Standard Practice for Making Reference Glass-Metal Sandwich Seal and Testing for Expansion Characteristics by Polarimetric Methods
- ASTM F105 Standard Specification for Type 58 Borosilicate Sealing Glass
- ASTM F140 Standard Practice for Making Reference Glass-Metal Butt Seals and Testing for Expansion Characteristics by Polarimetric Methods
- ASTM F105 Standard Specification for Type 58 Borosilicate Sealing Glass
- ASTM F144 Standard Practice for Making Reference Glass-Metal Sandwich Seal and Testing for Expansion Characteristics by Polarimetric Methods
- ASTM F218 Standard Test Method for Measuring Optical Retardation and Analyzing Stress in Glass
- ASTM F14 Standard Practice for Making and Testing Reference Glass-Metal Bead-Seal
- ASTM F29 Standard Specification for Dumet Wire for Glass-to-Metal Seal Applications
- ASTM E228 Standard Test Method for Linear Thermal Expansion of Solid Materials With a Push- Rod Dilatometer
- ASTM E228 Standard Test Method for Linear Thermal Expansion of Solid Materials With a Push- Rod Dilatometer
- ASTM F29 Standard Specification for Dumet Wire for Glass-to-Metal Seal Applications
- ASTM F14 Standard Practice for Making and Testing Reference Glass-Metal Bead-Seal
- ASTM F218 Standard Test Method for Measuring Optical Retardation and Analyzing Stress in Glass
- ASTM F144 Standard Practice for Making Reference Glass-Metal Sandwich Seal and Testing for Expansion Characteristics by Polarimetric Methods
- ASTM F105 Standard Specification for Type 58 Borosilicate Sealing Glass
- ASTM F140 Standard Practice for Making Reference Glass-Metal Butt Seals and Testing for Expansion Characteristics by Polarimetric Methods
- ASTM F105 Standard Specification for Type 58 Borosilicate Sealing Glass
- ASTM F144 Standard Practice for Making Reference Glass-Metal Sandwich Seal and Testing for Expansion Characteristics by Polarimetric Methods
- ASTM F218 Standard Test Method for Measuring Optical Retardation and Analyzing Stress in Glass
- ASTM F14 Standard Practice for Making and Testing Reference Glass-Metal Bead-Seal
- ASTM F29 Standard Specification for Dumet Wire for Glass-to-Metal Seal Applications
- ASTM F29 Standard Specification for Dumet Wire for Glass-to-Metal Seal Applications
- ASTM F14 Standard Practice for Making and Testing Reference Glass-Metal Bead-Seal
- ASTM F218 Standard Test Method for Measuring Optical Retardation and Analyzing Stress in Glass
- ASTM F144 Standard Practice for Making Reference Glass-Metal Sandwich Seal and Testing for Expansion Characteristics by Polarimetric Methods
- ASTM F105 Standard Specification for Type 58 Borosilicate Sealing Glass
- ASTM F140 Standard Practice for Making Reference Glass-Metal Butt Seals and Testing for Expansion Characteristics by Polarimetric Methods
- ASTM F105 Standard Specification for Type 58 Borosilicate Sealing Glass
- ASTM F144 Standard Practice for Making Reference Glass-Metal Sandwich Seal and Testing for Expansion Characteristics by Polarimetric Methods
- ASTM F218 Standard Test Method for Measuring Optical Retardation and Analyzing Stress in Glass
- ASTM F14 Standard Practice for Making and Testing Reference Glass-Metal Bead-Seal
- ASTM F14 Standard Practice for Making and Testing Reference Glass-Metal Bead-Seal
- ASTM F218 Standard Test Method for Measuring Optical Retardation and Analyzing Stress in Glass
- ASTM F144 Standard Practice for Making Reference Glass-Metal Sandwich Seal and Testing for Expansion Characteristics by Polarimetric Methods
- ASTM F105 Standard Specification for Type 58 Borosilicate Sealing Glass
- ASTM F140 Standard Practice for Making Reference Glass-Metal Butt Seals and Testing for Expansion Characteristics by Polarimetric Methods
- ASTM F105 Standard Specification for Type 58 Borosilicate Sealing Glass
- ASTM F144 Standard Practice for Making Reference Glass-Metal Sandwich Seal and Testing for Expansion Characteristics by Polarimetric Methods
- ASTM F218 Standard Test Method for Measuring Optical Retardation and Analyzing Stress in Glass
- ASTM F218 Standard Test Method for Measuring Optical Retardation and Analyzing Stress in Glass
- ASTM F144 Standard Practice for Making Reference Glass-Metal Sandwich Seal and Testing for Expansion Characteristics by Polarimetric Methods
- ASTM F105 Standard Specification for Type 58 Borosilicate Sealing Glass
- ASTM F140 Standard Practice for Making Reference Glass-Metal Butt Seals and Testing for Expansion Characteristics by Polarimetric Methods
- ASTM F105 Standard Specification for Type 58 Borosilicate Sealing Glass
- ASTM F144 Standard Practice for Making Reference Glass-Metal Sandwich Seal and Testing for Expansion Characteristics by Polarimetric Methods
- ASTM F144 Standard Practice for Making Reference Glass-Metal Sandwich Seal and Testing for Expansion Characteristics by Polarimetric Methods
- ASTM F105 Standard Specification for Type 58 Borosilicate Sealing Glass
- ASTM F140 Standard Practice for Making Reference Glass-Metal Butt Seals and Testing for Expansion Characteristics by Polarimetric Methods
- ASTM F105 Standard Specification for Type 58 Borosilicate Sealing Glass
- ASTM F105 Standard Specification for Type 58 Borosilicate Sealing Glass
- ASTM F140 Standard Practice for Making Reference Glass-Metal Butt Seals and Testing for Expansion Characteristics by Polarimetric Methods
- ASTM F140 Standard Practice for Making Reference Glass-Metal Butt Seals and Testing for Expansion Characteristics by Polarimetric Methods
- ASTM F79 Standard Specification for Type 101 Sealing Glass
- ASTM D150 Standard Test Methods for AC Loss Characteristics and Permittivity (Dielectric Constant) of Solid Electrical Insulation
- ASTM D1082 Standard Test Method for Dissipation Factor and Permittivity (Dielectric Constant) of Mica
- ASTM D748 Standard Specification for Natural Block Mica and Mica Films Suitable for Use in Fixed Mica-Dielectric Capacitors
- ASTM D351 Standard Classification for Natural Muscovite Block Mica and Thins Based on Visual Quality
- ASTM D2131 Standard Classification for Natural Muscovite Mica Splittings
- ASTM C600 Standard Test Method of Thermal Shock Test on Glass Pipe
- Картотека зарубежных и международных стандартов
ASTM International
Standard Guide for Testing Water-Borne Architectural Coatings
N D5324
Annotation
This guide covers the selection and use of procedures for testing water-borne coatings to be used on exterior, interior or both types of surfaces (Note 1). The properties that can be examined or, in some cases, the relevant test procedures are listed in Table 1 and Table 2.
NOTE 1—The term “architectural coating” as used here combines the definition in Terminology D16 with that in the FSCT Paint/Coatings Dictionary, 2 as follows: “Organic coatings intended for on-site application to interior or exterior surfaces of residential, commercial, institutional, or industrial buildings, in contrast to industrial coatings. They are protective and decorative finishes applied at ambient temperatures. Often called Trade Sales Coatings.”
NOTE 2—Architectural coatings that are designed to give better performance than most conventional coatings because they are tougher and more stain and abrasion resistant are covered by Guide D3730.
The types of organic coatings covered by this guide are as follows:
(1) Type 1 Interior Latex Flat Wall Paints,
(2) Type 2 Exterior Latex House Paints,
(3) Type 3 Water-Borne Floor Paints, and
(4) Type 4 Interior Latex Semigloss and Gloss Paints.
Each is intended for application by brushing, rolling, spraying or other means to the material appropriate for its type, which may include plaster, masonry, wallboard, wood, steel, previously painted surfaces, and other architectural substrates.
The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.



