ASTM E2624 Standard Practice for Torque Calibration of Testing Machines and Devices
Данный раздел/документ содержится в продуктах:
- Техэксперт: Машиностроительный комплекс
- Картотека зарубежных и международных стандартов
- ASTM D7202 Standard Test Method for Determination of Beryllium in the Workplace by Extraction and Optical Fluorescence Detection
- ASTM E177 Standard Practice for Use of the Terms Precision and Bias in ASTM Test Methods
- ASTM E691 Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method
- ASTM E177 Standard Practice for Use of the Terms Precision and Bias in ASTM Test Methods
- 13
- ASTM D7202 Standard Test Method for Determination of Beryllium in the Workplace by Extraction and Optical Fluorescence Detection
- ASTM E177 Standard Practice for Use of the Terms Precision and Bias in ASTM Test Methods
- ASTM E691 Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method
- ASTM E177 Standard Practice for Use of the Terms Precision and Bias in ASTM Test Methods
- 13.040
- ASTM D7202 Standard Test Method for Determination of Beryllium in the Workplace by Extraction and Optical Fluorescence Detection
- ASTM E177 Standard Practice for Use of the Terms Precision and Bias in ASTM Test Methods
- ASTM E691 Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method
- ASTM E177 Standard Practice for Use of the Terms Precision and Bias in ASTM Test Methods
- 13.040.30
- ASTM D7202 Standard Test Method for Determination of Beryllium in the Workplace by Extraction and Optical Fluorescence Detection
- ASTM E177 Standard Practice for Use of the Terms Precision and Bias in ASTM Test Methods
- ASTM E691 Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method
- ASTM E177 Standard Practice for Use of the Terms Precision and Bias in ASTM Test Methods
- ASTM D7202 Standard Test Method for Determination of Beryllium in the Workplace by Extraction and Optical Fluorescence Detection
- ASTM D7202 Standard Test Method for Determination of Beryllium in the Workplace by Extraction and Optical Fluorescence Detection
- ASTM D7202 Standard Test Method for Determination of Beryllium in the Workplace by Extraction and Optical Fluorescence Detection
- ASTM E2591 Standard Guide for Conducting Whole Sediment Toxicity Tests with Amphibians
- ASTM E177 Standard Practice for Use of the Terms Precision and Bias in ASTM Test Methods
- ASTM E691 Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method
- ASTM E177 Standard Practice for Use of the Terms Precision and Bias in ASTM Test Methods
- ASTM E691 Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method
- ASTM E855 Standard Test Methods for Bend Testing of Metallic Flat Materials for Spring Applications Involving Static Loading
- ASTM E4 Standard Practices for Force Verification of Testing Machines
- ASTM D7779 Standard Test Method for Determination of Fracture Toughness of Graphite at Ambient Temperature
- ASTM E2309/E2309M Standard Practices for Verification of Displacement Measuring Systems and Devices Used in Material Testing Machines
- ASTM F3141 Standard Guide for Total Knee Replacement Loading Profiles
- ASTM D7202 Standard Test Method for Determination of Beryllium in the Workplace by Extraction and Optical Fluorescence Detection
- Картотека зарубежных и международных стандартов
ASTM International
Standard Practice for Torque Calibration of Testing Machines and Devices
N E2624
Annotation
This practice covers procedures and requirements for the calibration of torque for static and quasi-static torque capable testing machines. These may, or may not, have torque indicating systems and include those devices used for the calibration of hand torque tools. Testing machines may be calibrated by one of the three following methods or combination thereof:
Use of standard weights and lever arms.
Use of elastic torque measuring devices.
Use of elastic force measuring devices and lever arms.
Any of the methods require a specific uncertainty of measurement, displaying metrological traceability to The International System of Units (SI).
NOTE 1- for further definition of the term metrological traceability, refer to the latest revision of JCGM 200: International vocabulary of metrology — Basic and general concepts and associated terms (VIM).
The procedures of 1.1.1, 1.1.2, and 1.1.3 apply to the calibration of the torque-indicating systems associated with the testing machine, such as a scale, dial, marked or unmarked recorder chart, digital display, etc. In all cases the buyer/owner/ user must designate the torque-indicating system(s) to be calibrated and included in the report.
Since conversion factors are not required in this practice, either english units, metric units, or SI units can be used as the standard.
Torque values indicated on displays/printouts of testing machine data systems—be they instantaneous, delayed, stored, or retransmitted—which are calibrated with provisions of 1.1.1, 1.1.2 or 1.1.3 or a combination thereof, and are within the 61 % of reading accuracy requirement, comply with this practice.



