ASTM E228 Standard Test Method for Linear Thermal Expansion of Solid Materials With a Push- Rod Dilatometer
Данный раздел/документ содержится в продуктах:
- Техэксперт: Машиностроительный комплекс
- Картотека зарубежных и международных стандартов
- ASTM F441/F441M Standard Specification for Chlorinated Poly(Vinyl Chloride) (CPVC) Plastic Pipe, Schedules 40 and 80
- ASTM D1785 Standard Specification for Poly(Vinyl Chloride) (PVC) Plastic Pipe, Schedules 40, 80, and 120
- ASTM F480 Standard Specification for Thermoplastic Well Casing Pipe and Couplings Made in Standard Dimension Ratios (SDR), SCH 40 and SCH 80
- ASTM D2122 Standard Test Method for Determining Dimensions of Thermoplastic Pipe and Fittings
- ASTM F2390 Standard Specification for Poly(Vinyl Chloride) (PVC) Plastic Drain, Waste, and Vent (DWV) Pipe and Fittings Having Post-Industrial Recycle Content
- ASTM F412 Standard Terminology Relating to Plastic Piping Systems
- ASTM D2105 Standard Test Method for Longitudinal Tensile Properties of “Fiberglass” (Glass-Fiber- Reinforced Thermosetting-Resin) Pipe and Tube
- ASTM E4 Standard Practices for Force Verification of Testing Machines
- ASTM E855 Standard Test Methods for Bend Testing of Metallic Flat Materials for Spring Applications Involving Static Loading
- ASTM E691 Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method
- ASTM E855 Standard Test Methods for Bend Testing of Metallic Flat Materials for Spring Applications Involving Static Loading
- ASTM E4 Standard Practices for Force Verification of Testing Machines
- ASTM D2105 Standard Test Method for Longitudinal Tensile Properties of “Fiberglass” (Glass-Fiber- Reinforced Thermosetting-Resin) Pipe and Tube
- ASTM F412 Standard Terminology Relating to Plastic Piping Systems
- ASTM F2390 Standard Specification for Poly(Vinyl Chloride) (PVC) Plastic Drain, Waste, and Vent (DWV) Pipe and Fittings Having Post-Industrial Recycle Content
- ASTM D2122 Standard Test Method for Determining Dimensions of Thermoplastic Pipe and Fittings
- ASTM F480 Standard Specification for Thermoplastic Well Casing Pipe and Couplings Made in Standard Dimension Ratios (SDR), SCH 40 and SCH 80
- ASTM D1785 Standard Specification for Poly(Vinyl Chloride) (PVC) Plastic Pipe, Schedules 40, 80, and 120
- 23
- ASTM F441/F441M Standard Specification for Chlorinated Poly(Vinyl Chloride) (CPVC) Plastic Pipe, Schedules 40 and 80
- ASTM D1785 Standard Specification for Poly(Vinyl Chloride) (PVC) Plastic Pipe, Schedules 40, 80, and 120
- ASTM F480 Standard Specification for Thermoplastic Well Casing Pipe and Couplings Made in Standard Dimension Ratios (SDR), SCH 40 and SCH 80
- ASTM D2122 Standard Test Method for Determining Dimensions of Thermoplastic Pipe and Fittings
- ASTM F2390 Standard Specification for Poly(Vinyl Chloride) (PVC) Plastic Drain, Waste, and Vent (DWV) Pipe and Fittings Having Post-Industrial Recycle Content
- ASTM F412 Standard Terminology Relating to Plastic Piping Systems
- ASTM D2105 Standard Test Method for Longitudinal Tensile Properties of “Fiberglass” (Glass-Fiber- Reinforced Thermosetting-Resin) Pipe and Tube
- ASTM E4 Standard Practices for Force Verification of Testing Machines
- ASTM E855 Standard Test Methods for Bend Testing of Metallic Flat Materials for Spring Applications Involving Static Loading
- ASTM E691 Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method
- ASTM E855 Standard Test Methods for Bend Testing of Metallic Flat Materials for Spring Applications Involving Static Loading
- ASTM E4 Standard Practices for Force Verification of Testing Machines
- ASTM D2105 Standard Test Method for Longitudinal Tensile Properties of “Fiberglass” (Glass-Fiber- Reinforced Thermosetting-Resin) Pipe and Tube
- ASTM F412 Standard Terminology Relating to Plastic Piping Systems
- ASTM F2390 Standard Specification for Poly(Vinyl Chloride) (PVC) Plastic Drain, Waste, and Vent (DWV) Pipe and Fittings Having Post-Industrial Recycle Content
- ASTM D2122 Standard Test Method for Determining Dimensions of Thermoplastic Pipe and Fittings
- ASTM F480 Standard Specification for Thermoplastic Well Casing Pipe and Couplings Made in Standard Dimension Ratios (SDR), SCH 40 and SCH 80
- ASTM D1785 Standard Specification for Poly(Vinyl Chloride) (PVC) Plastic Pipe, Schedules 40, 80, and 120
- 23.040
- ASTM F441/F441M Standard Specification for Chlorinated Poly(Vinyl Chloride) (CPVC) Plastic Pipe, Schedules 40 and 80
- ASTM D1785 Standard Specification for Poly(Vinyl Chloride) (PVC) Plastic Pipe, Schedules 40, 80, and 120
- ASTM F480 Standard Specification for Thermoplastic Well Casing Pipe and Couplings Made in Standard Dimension Ratios (SDR), SCH 40 and SCH 80
- ASTM D2122 Standard Test Method for Determining Dimensions of Thermoplastic Pipe and Fittings
- ASTM F2390 Standard Specification for Poly(Vinyl Chloride) (PVC) Plastic Drain, Waste, and Vent (DWV) Pipe and Fittings Having Post-Industrial Recycle Content
- ASTM F412 Standard Terminology Relating to Plastic Piping Systems
- ASTM D2105 Standard Test Method for Longitudinal Tensile Properties of “Fiberglass” (Glass-Fiber- Reinforced Thermosetting-Resin) Pipe and Tube
- ASTM E4 Standard Practices for Force Verification of Testing Machines
- ASTM E855 Standard Test Methods for Bend Testing of Metallic Flat Materials for Spring Applications Involving Static Loading
- ASTM E691 Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method
- ASTM E855 Standard Test Methods for Bend Testing of Metallic Flat Materials for Spring Applications Involving Static Loading
- ASTM E4 Standard Practices for Force Verification of Testing Machines
- ASTM D2105 Standard Test Method for Longitudinal Tensile Properties of “Fiberglass” (Glass-Fiber- Reinforced Thermosetting-Resin) Pipe and Tube
- ASTM F412 Standard Terminology Relating to Plastic Piping Systems
- ASTM F2390 Standard Specification for Poly(Vinyl Chloride) (PVC) Plastic Drain, Waste, and Vent (DWV) Pipe and Fittings Having Post-Industrial Recycle Content
- ASTM D2122 Standard Test Method for Determining Dimensions of Thermoplastic Pipe and Fittings
- ASTM F480 Standard Specification for Thermoplastic Well Casing Pipe and Couplings Made in Standard Dimension Ratios (SDR), SCH 40 and SCH 80
- ASTM D1785 Standard Specification for Poly(Vinyl Chloride) (PVC) Plastic Pipe, Schedules 40, 80, and 120
- ASTM F441/F441M Standard Specification for Chlorinated Poly(Vinyl Chloride) (CPVC) Plastic Pipe, Schedules 40 and 80
- ASTM F441/F441M Standard Specification for Chlorinated Poly(Vinyl Chloride) (CPVC) Plastic Pipe, Schedules 40 and 80
- ASTM D1785 Standard Specification for Poly(Vinyl Chloride) (PVC) Plastic Pipe, Schedules 40, 80, and 120
- ASTM F480 Standard Specification for Thermoplastic Well Casing Pipe and Couplings Made in Standard Dimension Ratios (SDR), SCH 40 and SCH 80
- ASTM D2122 Standard Test Method for Determining Dimensions of Thermoplastic Pipe and Fittings
- ASTM F2390 Standard Specification for Poly(Vinyl Chloride) (PVC) Plastic Drain, Waste, and Vent (DWV) Pipe and Fittings Having Post-Industrial Recycle Content
- ASTM F412 Standard Terminology Relating to Plastic Piping Systems
- ASTM D2105 Standard Test Method for Longitudinal Tensile Properties of “Fiberglass” (Glass-Fiber- Reinforced Thermosetting-Resin) Pipe and Tube
- ASTM E4 Standard Practices for Force Verification of Testing Machines
- ASTM E855 Standard Test Methods for Bend Testing of Metallic Flat Materials for Spring Applications Involving Static Loading
- ASTM E691 Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method
- ASTM E855 Standard Test Methods for Bend Testing of Metallic Flat Materials for Spring Applications Involving Static Loading
- ASTM E4 Standard Practices for Force Verification of Testing Machines
- ASTM D2105 Standard Test Method for Longitudinal Tensile Properties of “Fiberglass” (Glass-Fiber- Reinforced Thermosetting-Resin) Pipe and Tube
- ASTM F412 Standard Terminology Relating to Plastic Piping Systems
- ASTM F2390 Standard Specification for Poly(Vinyl Chloride) (PVC) Plastic Drain, Waste, and Vent (DWV) Pipe and Fittings Having Post-Industrial Recycle Content
- ASTM D2122 Standard Test Method for Determining Dimensions of Thermoplastic Pipe and Fittings
- ASTM F480 Standard Specification for Thermoplastic Well Casing Pipe and Couplings Made in Standard Dimension Ratios (SDR), SCH 40 and SCH 80
- ASTM F480 Standard Specification for Thermoplastic Well Casing Pipe and Couplings Made in Standard Dimension Ratios (SDR), SCH 40 and SCH 80
- ASTM D2122 Standard Test Method for Determining Dimensions of Thermoplastic Pipe and Fittings
- ASTM F2390 Standard Specification for Poly(Vinyl Chloride) (PVC) Plastic Drain, Waste, and Vent (DWV) Pipe and Fittings Having Post-Industrial Recycle Content
- ASTM F412 Standard Terminology Relating to Plastic Piping Systems
- ASTM D2105 Standard Test Method for Longitudinal Tensile Properties of “Fiberglass” (Glass-Fiber- Reinforced Thermosetting-Resin) Pipe and Tube
- ASTM E4 Standard Practices for Force Verification of Testing Machines
- ASTM E855 Standard Test Methods for Bend Testing of Metallic Flat Materials for Spring Applications Involving Static Loading
- ASTM E691 Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method
- ASTM E855 Standard Test Methods for Bend Testing of Metallic Flat Materials for Spring Applications Involving Static Loading
- ASTM E4 Standard Practices for Force Verification of Testing Machines
- ASTM D2105 Standard Test Method for Longitudinal Tensile Properties of “Fiberglass” (Glass-Fiber- Reinforced Thermosetting-Resin) Pipe and Tube
- ASTM F412 Standard Terminology Relating to Plastic Piping Systems
- ASTM F2390 Standard Specification for Poly(Vinyl Chloride) (PVC) Plastic Drain, Waste, and Vent (DWV) Pipe and Fittings Having Post-Industrial Recycle Content
- ASTM D2122 Standard Test Method for Determining Dimensions of Thermoplastic Pipe and Fittings
- ASTM D2122 Standard Test Method for Determining Dimensions of Thermoplastic Pipe and Fittings
- ASTM F2390 Standard Specification for Poly(Vinyl Chloride) (PVC) Plastic Drain, Waste, and Vent (DWV) Pipe and Fittings Having Post-Industrial Recycle Content
- ASTM F412 Standard Terminology Relating to Plastic Piping Systems
- ASTM D2105 Standard Test Method for Longitudinal Tensile Properties of “Fiberglass” (Glass-Fiber- Reinforced Thermosetting-Resin) Pipe and Tube
- ASTM E4 Standard Practices for Force Verification of Testing Machines
- ASTM E855 Standard Test Methods for Bend Testing of Metallic Flat Materials for Spring Applications Involving Static Loading
- ASTM E691 Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method
- ASTM E855 Standard Test Methods for Bend Testing of Metallic Flat Materials for Spring Applications Involving Static Loading
- ASTM E4 Standard Practices for Force Verification of Testing Machines
- ASTM D2105 Standard Test Method for Longitudinal Tensile Properties of “Fiberglass” (Glass-Fiber- Reinforced Thermosetting-Resin) Pipe and Tube
- ASTM F412 Standard Terminology Relating to Plastic Piping Systems
- ASTM F2390 Standard Specification for Poly(Vinyl Chloride) (PVC) Plastic Drain, Waste, and Vent (DWV) Pipe and Fittings Having Post-Industrial Recycle Content
- ASTM F2390 Standard Specification for Poly(Vinyl Chloride) (PVC) Plastic Drain, Waste, and Vent (DWV) Pipe and Fittings Having Post-Industrial Recycle Content
- ASTM F412 Standard Terminology Relating to Plastic Piping Systems
- ASTM D2105 Standard Test Method for Longitudinal Tensile Properties of “Fiberglass” (Glass-Fiber- Reinforced Thermosetting-Resin) Pipe and Tube
- ASTM E4 Standard Practices for Force Verification of Testing Machines
- ASTM E855 Standard Test Methods for Bend Testing of Metallic Flat Materials for Spring Applications Involving Static Loading
- ASTM E691 Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method
- ASTM E855 Standard Test Methods for Bend Testing of Metallic Flat Materials for Spring Applications Involving Static Loading
- ASTM E4 Standard Practices for Force Verification of Testing Machines
- ASTM D2105 Standard Test Method for Longitudinal Tensile Properties of “Fiberglass” (Glass-Fiber- Reinforced Thermosetting-Resin) Pipe and Tube
- ASTM F412 Standard Terminology Relating to Plastic Piping Systems
- ASTM D2105 Standard Test Method for Longitudinal Tensile Properties of “Fiberglass” (Glass-Fiber- Reinforced Thermosetting-Resin) Pipe and Tube
- ASTM E4 Standard Practices for Force Verification of Testing Machines
- ASTM E855 Standard Test Methods for Bend Testing of Metallic Flat Materials for Spring Applications Involving Static Loading
- ASTM E691 Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method
- ASTM E855 Standard Test Methods for Bend Testing of Metallic Flat Materials for Spring Applications Involving Static Loading
- ASTM E4 Standard Practices for Force Verification of Testing Machines
- ASTM E4 Standard Practices for Force Verification of Testing Machines
- ASTM E855 Standard Test Methods for Bend Testing of Metallic Flat Materials for Spring Applications Involving Static Loading
- ASTM E691 Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method
- ASTM E855 Standard Test Methods for Bend Testing of Metallic Flat Materials for Spring Applications Involving Static Loading
- ASTM E855 Standard Test Methods for Bend Testing of Metallic Flat Materials for Spring Applications Involving Static Loading
- ASTM E691 Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method
- ASTM E691 Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method
- ASTM D7542 Standard Test Method for Air Oxidation of Carbon and Graphite in the Kinetic Regime
- ASTM C1793 Standard Guide for Development of Specifications for Fiber Reinforced Silicon Carbide-Silicon Carbide Composite Structures for Nuclear Applications
- ASTM E228 Standard Test Method for Linear Thermal Expansion of Solid Materials With a Push- Rod Dilatometer
- ASTM C600 Standard Test Method of Thermal Shock Test on Glass Pipe
- ASTM F441/F441M Standard Specification for Chlorinated Poly(Vinyl Chloride) (CPVC) Plastic Pipe, Schedules 40 and 80
- Картотека зарубежных и международных стандартов
ASTM International
Standard Test Method for Linear Thermal Expansion of Solid Materials With a Push- Rod Dilatometer
N E228
Annotation
This test method covers the determination of the linear thermal expansion of rigid solid materials using push-rod dilatometers. This method is applicable over any practical temperature range where a device can be constructed to satisfy the performance requirements set forth in this standard.
NOTE 1—Initially, this method was developed for vitreous silica dilatometers operating over a temperature range of –180 to 900°C. The concepts and principles have been amply documented in the literature to be equally applicable for operating at higher temperatures. The precision and bias of these systems is believed to be of the same order as that for silica systems up to 900°C. However, their precision and bias have not yet been established over the relevant total range of temperature due to the lack of well-characterized reference materials and the need for interlaboratory comparisons.
For this purpose, a rigid solid is defined as a material that, at test temperature and under the stresses imposed by instrumentation, has a negligible creep or elastic strain rate, or both, thus insignificantly affecting the precision of thermallength change measurements. This includes, as examples, metals, ceramics, refractories, glasses, rocks and minerals, graphites, plastics, cements, cured mortars, woods, and a variety of composites.
The precision of this comparative test method is higher than that of other push-rod dilatometry techniques (for example, Test Method D696) and thermomechanical analysis (for example, Test Method E831) but is significantly lower than that of absolute methods such as interferometry (for example, Test Method E289). It is generally applicable to materials having absolute linear expansion coefficients exceeding 0.5 ?m/(m·°C) for a 1000°C range, and under special circumstances can be used for lower expansion materials when special precautions are used to ensure that the produced expansion of the specimen falls within the capabilities of the measuring system. In such cases, a sufficiently long specimen was found to meet the specification.



