ASTM E2310 Standard Guide for Use of Spectral Searching by Curve Matching Algorithms with Data Recorded Using Mid-Infrared Spectroscopy
Данный раздел/документ содержится в продуктах:
- Техэксперт: Машиностроительный комплекс
- Картотека зарубежных и международных стандартов
- ASTM G125 Standard Test Method for Measuring Liquid and Solid Material Fire Limits in Gaseous Oxidants
- ASTM D618 Standard Practice for Conditioning Plastics for Testing
- ASTM F2390 Standard Specification for Poly(Vinyl Chloride) (PVC) Plastic Drain, Waste, and Vent (DWV) Pipe and Fittings Having Post-Industrial Recycle Content
- ASTM F412 Standard Terminology Relating to Plastic Piping Systems
- ASTM F480 Standard Specification for Thermoplastic Well Casing Pipe and Couplings Made in Standard Dimension Ratios (SDR), SCH 40 and SCH 80
- ASTM D2122 Standard Test Method for Determining Dimensions of Thermoplastic Pipe and Fittings
- ASTM F480 Standard Specification for Thermoplastic Well Casing Pipe and Couplings Made in Standard Dimension Ratios (SDR), SCH 40 and SCH 80
- ASTM F412 Standard Terminology Relating to Plastic Piping Systems
- ASTM F2390 Standard Specification for Poly(Vinyl Chloride) (PVC) Plastic Drain, Waste, and Vent (DWV) Pipe and Fittings Having Post-Industrial Recycle Content
- ASTM D618 Standard Practice for Conditioning Plastics for Testing
- 13
- ASTM G125 Standard Test Method for Measuring Liquid and Solid Material Fire Limits in Gaseous Oxidants
- ASTM D618 Standard Practice for Conditioning Plastics for Testing
- ASTM F2390 Standard Specification for Poly(Vinyl Chloride) (PVC) Plastic Drain, Waste, and Vent (DWV) Pipe and Fittings Having Post-Industrial Recycle Content
- ASTM F412 Standard Terminology Relating to Plastic Piping Systems
- ASTM F480 Standard Specification for Thermoplastic Well Casing Pipe and Couplings Made in Standard Dimension Ratios (SDR), SCH 40 and SCH 80
- ASTM D2122 Standard Test Method for Determining Dimensions of Thermoplastic Pipe and Fittings
- ASTM F480 Standard Specification for Thermoplastic Well Casing Pipe and Couplings Made in Standard Dimension Ratios (SDR), SCH 40 and SCH 80
- ASTM F412 Standard Terminology Relating to Plastic Piping Systems
- ASTM F2390 Standard Specification for Poly(Vinyl Chloride) (PVC) Plastic Drain, Waste, and Vent (DWV) Pipe and Fittings Having Post-Industrial Recycle Content
- ASTM D618 Standard Practice for Conditioning Plastics for Testing
- 13.220
- ASTM G125 Standard Test Method for Measuring Liquid and Solid Material Fire Limits in Gaseous Oxidants
- ASTM D618 Standard Practice for Conditioning Plastics for Testing
- ASTM F2390 Standard Specification for Poly(Vinyl Chloride) (PVC) Plastic Drain, Waste, and Vent (DWV) Pipe and Fittings Having Post-Industrial Recycle Content
- ASTM F412 Standard Terminology Relating to Plastic Piping Systems
- ASTM F480 Standard Specification for Thermoplastic Well Casing Pipe and Couplings Made in Standard Dimension Ratios (SDR), SCH 40 and SCH 80
- ASTM D2122 Standard Test Method for Determining Dimensions of Thermoplastic Pipe and Fittings
- ASTM F480 Standard Specification for Thermoplastic Well Casing Pipe and Couplings Made in Standard Dimension Ratios (SDR), SCH 40 and SCH 80
- ASTM F412 Standard Terminology Relating to Plastic Piping Systems
- ASTM F2390 Standard Specification for Poly(Vinyl Chloride) (PVC) Plastic Drain, Waste, and Vent (DWV) Pipe and Fittings Having Post-Industrial Recycle Content
- ASTM D618 Standard Practice for Conditioning Plastics for Testing
- ASTM G125 Standard Test Method for Measuring Liquid and Solid Material Fire Limits in Gaseous Oxidants
- ASTM G125 Standard Test Method for Measuring Liquid and Solid Material Fire Limits in Gaseous Oxidants
- ASTM F2390 Standard Specification for Poly(Vinyl Chloride) (PVC) Plastic Drain, Waste, and Vent (DWV) Pipe and Fittings Having Post-Industrial Recycle Content
- ASTM F412 Standard Terminology Relating to Plastic Piping Systems
- ASTM F480 Standard Specification for Thermoplastic Well Casing Pipe and Couplings Made in Standard Dimension Ratios (SDR), SCH 40 and SCH 80
- ASTM D2122 Standard Test Method for Determining Dimensions of Thermoplastic Pipe and Fittings
- ASTM F480 Standard Specification for Thermoplastic Well Casing Pipe and Couplings Made in Standard Dimension Ratios (SDR), SCH 40 and SCH 80
- ASTM F412 Standard Terminology Relating to Plastic Piping Systems
- ASTM F480 Standard Specification for Thermoplastic Well Casing Pipe and Couplings Made in Standard Dimension Ratios (SDR), SCH 40 and SCH 80
- ASTM D2122 Standard Test Method for Determining Dimensions of Thermoplastic Pipe and Fittings
- ASTM D2122 Standard Test Method for Determining Dimensions of Thermoplastic Pipe and Fittings
- ASTM F1960 Standard Specification for Cold Expansion Fittings with PEX Reinforcing Rings for Use with Cross-linked Polyethylene (PEX) Tubing
- ASTM D6645 Standard Test Method for Methyl (Comonomer) Content in Polyethylene by Infrared Spectrophotometry
- ASTM E168 Standard Practices for General Techniques of Infrared Quantitative Analysis
- ASTM E1642 Standard Practice for General Techniques of Gas Chromatography Infrared (GC/IR) Analysis
- ASTM G125 Standard Test Method for Measuring Liquid and Solid Material Fire Limits in Gaseous Oxidants
- Картотека зарубежных и международных стандартов
ASTM International
Standard Guide for Use of Spectral Searching by Curve Matching Algorithms with Data Recorded Using Mid-Infrared Spectroscopy
N E2310
Annotation
Spectral searching is the process whereby a spectrum of an unknown material is evaluated against a library (database) of digitally recorded reference spectra. The purpose of this evaluation is classification of the unknown and, where possible, identification of the unknown. Spectral searching is intended as a screening method to assist the analyst and is not an absolute identification technique. Spectral searching is not intended to replace an expert in infrared spectroscopy. Spectral searching should not be used without suitable training.
The user of this guide should be aware that the results of a spectral search can be affected by the following factors described in Section 5: (1) baselines, (2) sample purity, (3) Absorbance linearity (Beer's Law), (4) sample thickness, (5) sample technique and preparation, (6) physical state of the sample, (7) wavenumber range, (8) spectral resolution, and (9) choice of algorithm.
Many other factors can affect spectral searching results.
The scope of this guide is to provide a guide for the use of search algorithms for mid-infrared spectroscopy. The methods described herein may be applicable to the use of these algorithms for other types of spectroscopic data, but each type of data search should be assessed separately.
The Euclidean distance algorithm and the first derivative Euclidean distance algorithm are described and their use discussed. The theory and common assumptions made when using search algorithms are also discussed, along with guidelines for the use and interpretation of the search results.
The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.



