ASTM E2581 Standard Practice for Shearography of Polymer Matrix Composites and Sandwich Core Materials in Aerospace Applications
Данный раздел/документ содержится в продуктах:
- Техэксперт: Машиностроительный комплекс
- Картотека зарубежных и международных стандартов
- ASTM D7202 Standard Test Method for Determination of Beryllium in the Workplace by Extraction and Optical Fluorescence Detection
- ASTM E177 Standard Practice for Use of the Terms Precision and Bias in ASTM Test Methods
- ASTM E691 Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method
- ASTM E855 Standard Test Methods for Bend Testing of Metallic Flat Materials for Spring Applications Involving Static Loading
- ASTM E691 Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method
- ASTM E177 Standard Practice for Use of the Terms Precision and Bias in ASTM Test Methods
- 13
- ASTM D7202 Standard Test Method for Determination of Beryllium in the Workplace by Extraction and Optical Fluorescence Detection
- ASTM E177 Standard Practice for Use of the Terms Precision and Bias in ASTM Test Methods
- ASTM E691 Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method
- ASTM E855 Standard Test Methods for Bend Testing of Metallic Flat Materials for Spring Applications Involving Static Loading
- ASTM E691 Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method
- ASTM E177 Standard Practice for Use of the Terms Precision and Bias in ASTM Test Methods
- 13.040
- ASTM D7202 Standard Test Method for Determination of Beryllium in the Workplace by Extraction and Optical Fluorescence Detection
- ASTM E177 Standard Practice for Use of the Terms Precision and Bias in ASTM Test Methods
- ASTM E691 Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method
- ASTM E855 Standard Test Methods for Bend Testing of Metallic Flat Materials for Spring Applications Involving Static Loading
- ASTM E691 Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method
- ASTM E177 Standard Practice for Use of the Terms Precision and Bias in ASTM Test Methods
- 13.040.30
- ASTM D7202 Standard Test Method for Determination of Beryllium in the Workplace by Extraction and Optical Fluorescence Detection
- ASTM E177 Standard Practice for Use of the Terms Precision and Bias in ASTM Test Methods
- ASTM E691 Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method
- ASTM E855 Standard Test Methods for Bend Testing of Metallic Flat Materials for Spring Applications Involving Static Loading
- ASTM E691 Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method
- ASTM E177 Standard Practice for Use of the Terms Precision and Bias in ASTM Test Methods
- ASTM D7202 Standard Test Method for Determination of Beryllium in the Workplace by Extraction and Optical Fluorescence Detection
- ASTM D7202 Standard Test Method for Determination of Beryllium in the Workplace by Extraction and Optical Fluorescence Detection
- ASTM D7202 Standard Test Method for Determination of Beryllium in the Workplace by Extraction and Optical Fluorescence Detection
- ASTM E2591 Standard Guide for Conducting Whole Sediment Toxicity Tests with Amphibians
- ASTM E177 Standard Practice for Use of the Terms Precision and Bias in ASTM Test Methods
- ASTM E691 Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method
- ASTM E855 Standard Test Methods for Bend Testing of Metallic Flat Materials for Spring Applications Involving Static Loading
- ASTM E691 Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method
- ASTM E177 Standard Practice for Use of the Terms Precision and Bias in ASTM Test Methods
- ASTM E691 Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method
- ASTM E855 Standard Test Methods for Bend Testing of Metallic Flat Materials for Spring Applications Involving Static Loading
- ASTM E855 Standard Test Methods for Bend Testing of Metallic Flat Materials for Spring Applications Involving Static Loading
- ASTM E4 Standard Practices for Force Verification of Testing Machines
- ASTM D7248/D7248M Standard Test Method for Bearing/Bypass Interaction Response of Polymer Matrix Composite Laminates Using 2-Fastener Specimens
- ASTM E1309 Standard Guide for Identification of Fiber-Reinforced Polymer-Matrix Composite Materials in Databases
- ASTM E1434 Standard Guide for Recording Mechanical Test Data of Fiber-Reinforced Composite Materials in Databases
- ASTM D7202 Standard Test Method for Determination of Beryllium in the Workplace by Extraction and Optical Fluorescence Detection
- Картотека зарубежных и международных стандартов
ASTM International
Standard Practice for Shearography of Polymer Matrix Composites and Sandwich Core Materials in Aerospace Applications
N E2581
Annotation
This practice describes procedures for shearography of polymer matrix composites and sandwich core materials made entirely or in part from fiber-reinforced polymer matrix composites. The composite materials under consideration typically contain continuous high modulus (greater than 20 GPa (3 106 psi)) fibers, but may also contain discontinuous fiber, fabric, or particulate reinforcement.
This practice describes established shearography procedures that are currently used by industry and federal agencies that have demonstrated utility in quality assurance of polymer matrix composites and sandwich core materials during product process design and optimization, manufacturing process control, after manufacture inspection, and in service inspection.
This practice has utility for testing of polymer matrix composites and sandwich core materials containing but not limited to bismaleimide, epoxy, phenolic, poly(amideimide), polybenzimidazole, polyester (thermosetting and thermoplastic), poly(ether ether ketone), poly(ether imide), polyimide (thermosetting and thermoplastic), poly(phenylene sulfide), or polysulfone matrices; and alumina, aramid, boron, carbon, glass, quartz, or silicon carbide fibers. Typical asfabricated geometries include uniaxial, cross-ply and angle-ply laminates; as well as honeycomb and foam core sandwich materials and structures.
This practice does not specify accept-reject criteria and is not intended to be used as a means for approving polymer matrix composites or sandwich core materials for service.
To ensure proper use of the referenced standards, there are recognized nondestructive testing (NDT) specialists that are certified according to industry and company NDT specifications. It is recommended that an NDT specialist be a part of any composite component design, quality assurance, in-service maintenance, or damage examination activity.



