ASTM A847/A847M Standard Specification for Cold-Formed Welded and Seamless High-Strength, Low- Alloy Structural Tubing with Improved Atmospheric Corrosion Resistance
Данный раздел/документ содержится в продуктах:
- Техэксперт: Машиностроительный комплекс
- Картотека зарубежных и международных стандартов
- ASTM D7202 Standard Test Method for Determination of Beryllium in the Workplace by Extraction and Optical Fluorescence Detection
- ASTM E177 Standard Practice for Use of the Terms Precision and Bias in ASTM Test Methods
- 13
- ASTM D7202 Standard Test Method for Determination of Beryllium in the Workplace by Extraction and Optical Fluorescence Detection
- ASTM E177 Standard Practice for Use of the Terms Precision and Bias in ASTM Test Methods
- 13.040
- ASTM D7202 Standard Test Method for Determination of Beryllium in the Workplace by Extraction and Optical Fluorescence Detection
- ASTM E177 Standard Practice for Use of the Terms Precision and Bias in ASTM Test Methods
- 13.040.30
- ASTM D7202 Standard Test Method for Determination of Beryllium in the Workplace by Extraction and Optical Fluorescence Detection
- ASTM E177 Standard Practice for Use of the Terms Precision and Bias in ASTM Test Methods
- ASTM D7202 Standard Test Method for Determination of Beryllium in the Workplace by Extraction and Optical Fluorescence Detection
- ASTM D7202 Standard Test Method for Determination of Beryllium in the Workplace by Extraction and Optical Fluorescence Detection
- ASTM D7202 Standard Test Method for Determination of Beryllium in the Workplace by Extraction and Optical Fluorescence Detection
- ASTM E2122 Standard Guide for Conducting In-situ Field Bioassays With Caged Bivalves
- ASTM E1525 Standard Guide for Designing Biological Tests with Sediments
- ASTM E2591 Standard Guide for Conducting Whole Sediment Toxicity Tests with Amphibians
- ASTM E177 Standard Practice for Use of the Terms Precision and Bias in ASTM Test Methods
- ASTM E2591 Standard Guide for Conducting Whole Sediment Toxicity Tests with Amphibians
- ASTM E1525 Standard Guide for Designing Biological Tests with Sediments
- ASTM E1525 Standard Guide for Designing Biological Tests with Sediments
- ASTM E2591 Standard Guide for Conducting Whole Sediment Toxicity Tests with Amphibians
- ASTM E177 Standard Practice for Use of the Terms Precision and Bias in ASTM Test Methods
- ASTM E2591 Standard Guide for Conducting Whole Sediment Toxicity Tests with Amphibians
- ASTM E2591 Standard Guide for Conducting Whole Sediment Toxicity Tests with Amphibians
- ASTM E177 Standard Practice for Use of the Terms Precision and Bias in ASTM Test Methods
- ASTM E691 Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method
- ASTM E855 Standard Test Methods for Bend Testing of Metallic Flat Materials for Spring Applications Involving Static Loading
- ASTM E4 Standard Practices for Force Verification of Testing Machines
- ASTM C1802 Standard Specification for Design, Testing, Manufacture, Selection, and Installation of Fabricated Metal Access Hatches for Utility, Water, and Wastewater Structures
- ASTM D7202 Standard Test Method for Determination of Beryllium in the Workplace by Extraction and Optical Fluorescence Detection
- Картотека зарубежных и международных стандартов
ASTM International
Standard Specification for Cold-Formed Welded and Seamless High-Strength, Low- Alloy Structural Tubing with Improved Atmospheric Corrosion Resistance
N A847/A847M
Annotation
This specification covers cold-formed welded and seamless high-strength, low-alloy round, square, rectangular, or special shaped structural tubing for welded, riveted, or bolted construction of bridges and buildings and for general structural purposes where high strength and enhanced atmospheric corrosion resistance are required (Note 1). The atmospheric corrosion resistance of this steel in most environments is substantially better than carbon steel with or without copper addition (Note 2). When properly exposed to the atmosphere, this steel can be used bare (unpainted) for many applications. When this steel is used in welded construction, the welding procedure shall be suitable for the steel and the intended service.
This tubing is produced in welded sizes with a maximum periphery of 64 in. [1626 mm] and a maximum wall of 0.625 in. [15.9 mm], and in seamless with a maximum periphery of 32 in. [813 mm] and a maximum wall of 0.500 in. [12.7 mm]. Tubing having other dimensions may be furnished provided such tubing complies with all other requirements of this specification.
The values stated in either SI units or inch-pound units are to be regarded separately as standard. Within the text, the SI units are shown in brackets. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.
NOTE 1—Products manufactured to this specification may not be suitable for those applications where low temperature notch toughness properties may be important, such as dynamically loaded elements in welded structures, etc.



