ASTM C1326 Standard Test Method for Knoop Indentation Hardness of Advanced Ceramics
Данный раздел/документ содержится в продуктах:
- Техэксперт: Машиностроительный комплекс
- Картотека зарубежных и международных стандартов
- ASTM D7202 Standard Test Method for Determination of Beryllium in the Workplace by Extraction and Optical Fluorescence Detection
- 13
- ASTM D7202 Standard Test Method for Determination of Beryllium in the Workplace by Extraction and Optical Fluorescence Detection
- 13.040
- ASTM D7202 Standard Test Method for Determination of Beryllium in the Workplace by Extraction and Optical Fluorescence Detection
- 13.040.30
- ASTM D7202 Standard Test Method for Determination of Beryllium in the Workplace by Extraction and Optical Fluorescence Detection
- ASTM E1023 Standard Guide for Assessing the Hazard of a Material to Aquatic Organisms and Their Uses
- ASTM E2122 Standard Guide for Conducting In-situ Field Bioassays With Caged Bivalves
- ASTM E1525 Standard Guide for Designing Biological Tests with Sediments
- ASTM E2122 Standard Guide for Conducting In-situ Field Bioassays With Caged Bivalves
- ASTM E2122 Standard Guide for Conducting In-situ Field Bioassays With Caged Bivalves
- ASTM E1525 Standard Guide for Designing Biological Tests with Sediments
- ASTM E1525 Standard Guide for Designing Biological Tests with Sediments
- ASTM E2591 Standard Guide for Conducting Whole Sediment Toxicity Tests with Amphibians
- ASTM E691 Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method
- ASTM E855 Standard Test Methods for Bend Testing of Metallic Flat Materials for Spring Applications Involving Static Loading
- ASTM E4 Standard Practices for Force Verification of Testing Machines
- Картотека зарубежных и международных стандартов
ASTM International
Standard Test Method for Knoop Indentation Hardness of Advanced Ceramics
N C1326
Annotation
This test method covers the determination of the Knoop indentation hardness of advanced ceramics. In this test, a pointed, rhombic base, pyramidal diamond indenter of prescribed shape is pressed into the surface of a ceramic with a predetermined force to produce a relatively small, permanent indentation. The surface projection of the long diagonal of the permanent indentation is measured using a light microscope. The length of the long diagonal and the applied force are used to calculate the Knoop hardness which represents the material's resistance to penetration by the Knoop indenter.
The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
Units—When Knoop and Vickers hardness tests were developed, the force levels were specified in units of gramsforce (gf) and kilograms-force (kgf). This standard specifies the units of force and length in the International System of Units (SI); that is, force in newtons (N) and length in mm or m. However, because of the historical precedent and continued common usage, force values in gf and kgf units are occasionally provided for information. This test method specifies that Knoop hardness be reported either in units of GPa or as a dimensionless Knoop hardness number.
This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
Автоматический перевод:



