ASTM D7363 REV A Standard Test Method for Determination of Parent and Alkyl Polycyclic Aromatics in Sediment Pore Water Using Solid-Phase Microextraction and Gas Chromatography/Mass Spectrometry in Selected Ion Monitoring Mode
Данный раздел/документ содержится в продуктах:
- Техэксперт: Машиностроительный комплекс
- Картотека зарубежных и международных стандартов
- ASTM D7202 Standard Test Method for Determination of Beryllium in the Workplace by Extraction and Optical Fluorescence Detection
- 13
- ASTM E4 Standard Practices for Force Verification of Testing Machines
- ASTM E855 Standard Test Methods for Bend Testing of Metallic Flat Materials for Spring Applications Involving Static Loading
- ASTM E691 Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method
- ASTM E855 Standard Test Methods for Bend Testing of Metallic Flat Materials for Spring Applications Involving Static Loading
- ASTM E855 Standard Test Methods for Bend Testing of Metallic Flat Materials for Spring Applications Involving Static Loading
- ASTM E691 Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method
- ASTM E691 Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method
- ASTM E70 Standard Test Method for pH of Aqueous Solutions With the Glass Electrode
- ULC CAN/ULC-S563-06 STANDARD FOR CATEGORY 3 FILM-FORMING FLUOROPROTEIN (FFFP) FOAM LIQUID CONCENTRATES - Second Edition
- ULC ULC-S564-06 STANDARD FOR CATEGORIES 1 AND 2 FOAM LIQUID CONCENTRATES - Second Edition
- ULC CAN/ULC-S560-06 STANDARD FOR CATEGORY 3 AQUEOUS FILM-FORMING FOAM (AFFF) LIQUID CONCENTRATES - Second Edition
- Картотека зарубежных и международных стандартов
ASTM International
Standard Test Method for Determination of Parent and Alkyl Polycyclic Aromatics in Sediment Pore Water Using Solid-Phase Microextraction and Gas Chromatography/Mass Spectrometry in Selected Ion Monitoring Mode
N D7363 REV A
Annotation
The U.S. Environmental Protection Agency (USEPA) narcosis model for benthic organisms in sediments contaminated with polycyclic aromatic hydrocarbons (PAHs) is based on the concentrations of dissolved PAHs in the interstitial water or "pore water" in sediment. This test method covers the separation of pore water from PAH-impacted sediment samples, the removal of colloids, and the subsequent measurement of dissolved concentrations of the required 10 parent PAHs and 14 groups of alkylated daughter PAHs in the pore water samples. The "24 PAHs" are determined using solidphase microextraction (SPME) followed by Gas Chromatography/Mass Spectrometry (GC/MS) analysis in selected ion monitoring (SIM) mode. Isotopically labeled analogs of the target compounds are introduced prior to the extraction, and are used as quantification references.
Lower molecular weight PAHs are more water soluble than higher molecular weight PAHs. Therefore, USEPAregulated PAH concentrations in pore water samples vary widely due to differing saturation water solubilities that range from 0.2 g/L for indeno[1,2,3-cd]pyrene to 31 000 g/L for naphthalene. This method can accommodate the measurement of microgram per litre concentrations for low molecular weight PAHs and nanogram per litre concentrations for high molecular weight PAHs.
The USEPA narcosis model predicts toxicity to benthic organisms if the sum of the toxic units ( TUc) calculated for all "34 PAHs" measured in a pore water sample is greater than or equal to 1. For this reason, the performance limit required for the individual PAH measurements was defined as the concentration of an individual PAH that would yield 1 34 of a toxic unit (TU). However, the focus of this method is the 10 parent PAHs and 14 groups of alkylated PAHs (Table 1) that contribute 95 % of the toxic units based on the analysis of 120 background and impacted sediment pore water samples.3 The primary reasons for eliminating the rest of the 5-6 ring parent PAHs are: (1) these PAHs contribute insignificantly to the pore water TU, and (2) these PAHs exhibit extremely low saturation solubilities that will make the detection of these compounds difficult in pore water. This method can achieve the required detection limits, which range from approximately 0.01 g/L, for high molecular weight PAHs, to approximately 3 g/L for low molecular weight PAHs.



