ASTM C1674 Standard Test Method for Flexural Strength of Advanced Ceramics with Engineered Porosity (Honeycomb Cellular Channels) at Ambient Temperatures
Данный раздел/документ содержится в продуктах:
- Техэксперт: Машиностроительный комплекс
- Картотека зарубежных и международных стандартов
- ASTM D7202 Standard Test Method for Determination of Beryllium in the Workplace by Extraction and Optical Fluorescence Detection
- 13
- ASTM D7202 Standard Test Method for Determination of Beryllium in the Workplace by Extraction and Optical Fluorescence Detection
- 13.040
- ASTM D7202 Standard Test Method for Determination of Beryllium in the Workplace by Extraction and Optical Fluorescence Detection
- 13.040.30
- ASTM D7202 Standard Test Method for Determination of Beryllium in the Workplace by Extraction and Optical Fluorescence Detection
- ASTM E1023 Standard Guide for Assessing the Hazard of a Material to Aquatic Organisms and Their Uses
- ASTM E2122 Standard Guide for Conducting In-situ Field Bioassays With Caged Bivalves
- ASTM E1525 Standard Guide for Designing Biological Tests with Sediments
- ASTM E2122 Standard Guide for Conducting In-situ Field Bioassays With Caged Bivalves
- ASTM E2122 Standard Guide for Conducting In-situ Field Bioassays With Caged Bivalves
- ASTM E1525 Standard Guide for Designing Biological Tests with Sediments
- ASTM E1525 Standard Guide for Designing Biological Tests with Sediments
- ASTM E2591 Standard Guide for Conducting Whole Sediment Toxicity Tests with Amphibians
- ASTM E691 Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method
- ASTM E855 Standard Test Methods for Bend Testing of Metallic Flat Materials for Spring Applications Involving Static Loading
- ASTM E4 Standard Practices for Force Verification of Testing Machines
- Картотека зарубежных и международных стандартов
ASTM International
Standard Test Method for Flexural Strength of Advanced Ceramics with Engineered Porosity (Honeycomb Cellular Channels) at Ambient Temperatures
N C1674
Annotation
This test method covers the determination of the flexural strength (modulus of rupture in bending) at ambient conditions of advanced ceramic structures with 2-dimensional honeycomb channel architectures.
The test method is focused on engineered ceramic components with longitudinal hollow channels, commonly called “honeycomb” channels. (See Fig. 1.) The components generally have 30 % or more porosity and the cross-sectional dimensions of the honeycomb channels are on the order of 1 mm or greater. Ceramics with these honeycomb structures are used in a wide range of applications (catalytic conversion supports (1),2 high temperature filters (2, 3), combustion burner plates (4), energy absorption and damping (5), etc.). The honeycomb ceramics can be made in a range of ceramic compositions—alumina, cordierite, zirconia, spinel, mullite, silicon carbide, silicon nitride, graphite, and carbon. The components are produced in a variety of geometries (blocks, plates, cylinders, rods, rings).
The test method describes two test specimen geometries for determining the flexural strength (modulus of rupture) for a porous honeycomb ceramic test specimen (see Fig. 2):
Test Method A—A 4-point or 3-point bending test with user-defined specimen geometries, and
Test Method B—A 4-point-1?4 point bending test with a defined rectangular specimen geometry (13 mm ? 25 mm ? > 116 mm) and a 90 mm outer support span geometry suitable for cordierite and silicon carbide honeycombs with small cell sizes.
The test specimens are stressed to failure and the breaking force value, specimen and cell dimensions, and loading geometry data are used to calculate a nominal beam strength, a wall fracture strength, and a honeycomb structure strength.



