ASTM E973 Standard Test Method for Determination of the Spectral Mismatch Parameter Between a Photovoltaic Device and a Photovoltaic Reference Cell
Данный раздел/документ содержится в продуктах:
- Техэксперт: Машиностроительный комплекс
- Картотека зарубежных и международных стандартов
- ASTM E1362 Standard Test Method for Calibration of Non-Concentrator Photovoltaic Secondary Reference Cells
- 31
- ASTM F441/F441M Standard Specification for Chlorinated Poly(Vinyl Chloride) (CPVC) Plastic Pipe, Schedules 40 and 80
- ASTM D1785 Standard Specification for Poly(Vinyl Chloride) (PVC) Plastic Pipe, Schedules 40, 80, and 120
- ASTM F480 Standard Specification for Thermoplastic Well Casing Pipe and Couplings Made in Standard Dimension Ratios (SDR), SCH 40 and SCH 80
- ASTM D2122 Standard Test Method for Determining Dimensions of Thermoplastic Pipe and Fittings
- ASTM F2390 Standard Specification for Poly(Vinyl Chloride) (PVC) Plastic Drain, Waste, and Vent (DWV) Pipe and Fittings Having Post-Industrial Recycle Content
- ASTM F412 Standard Terminology Relating to Plastic Piping Systems
- ASTM D2105 Standard Test Method for Longitudinal Tensile Properties of “Fiberglass” (Glass-Fiber- Reinforced Thermosetting-Resin) Pipe and Tube
- ASTM F412 Standard Terminology Relating to Plastic Piping Systems
- ASTM F2390 Standard Specification for Poly(Vinyl Chloride) (PVC) Plastic Drain, Waste, and Vent (DWV) Pipe and Fittings Having Post-Industrial Recycle Content
- ASTM D2122 Standard Test Method for Determining Dimensions of Thermoplastic Pipe and Fittings
- ASTM F480 Standard Specification for Thermoplastic Well Casing Pipe and Couplings Made in Standard Dimension Ratios (SDR), SCH 40 and SCH 80
- ASTM D1785 Standard Specification for Poly(Vinyl Chloride) (PVC) Plastic Pipe, Schedules 40, 80, and 120
- ASTM D1785 Standard Specification for Poly(Vinyl Chloride) (PVC) Plastic Pipe, Schedules 40, 80, and 120
- ASTM F480 Standard Specification for Thermoplastic Well Casing Pipe and Couplings Made in Standard Dimension Ratios (SDR), SCH 40 and SCH 80
- ASTM D2122 Standard Test Method for Determining Dimensions of Thermoplastic Pipe and Fittings
- ASTM F2390 Standard Specification for Poly(Vinyl Chloride) (PVC) Plastic Drain, Waste, and Vent (DWV) Pipe and Fittings Having Post-Industrial Recycle Content
- ASTM F412 Standard Terminology Relating to Plastic Piping Systems
- ASTM D2105 Standard Test Method for Longitudinal Tensile Properties of “Fiberglass” (Glass-Fiber- Reinforced Thermosetting-Resin) Pipe and Tube
- ASTM F412 Standard Terminology Relating to Plastic Piping Systems
- ASTM F2390 Standard Specification for Poly(Vinyl Chloride) (PVC) Plastic Drain, Waste, and Vent (DWV) Pipe and Fittings Having Post-Industrial Recycle Content
- ASTM D2122 Standard Test Method for Determining Dimensions of Thermoplastic Pipe and Fittings
- ASTM F480 Standard Specification for Thermoplastic Well Casing Pipe and Couplings Made in Standard Dimension Ratios (SDR), SCH 40 and SCH 80
- ASTM F480 Standard Specification for Thermoplastic Well Casing Pipe and Couplings Made in Standard Dimension Ratios (SDR), SCH 40 and SCH 80
- ASTM D2122 Standard Test Method for Determining Dimensions of Thermoplastic Pipe and Fittings
- ASTM F2390 Standard Specification for Poly(Vinyl Chloride) (PVC) Plastic Drain, Waste, and Vent (DWV) Pipe and Fittings Having Post-Industrial Recycle Content
- ASTM F412 Standard Terminology Relating to Plastic Piping Systems
- ASTM D2105 Standard Test Method for Longitudinal Tensile Properties of “Fiberglass” (Glass-Fiber- Reinforced Thermosetting-Resin) Pipe and Tube
- ASTM F412 Standard Terminology Relating to Plastic Piping Systems
- ASTM F2390 Standard Specification for Poly(Vinyl Chloride) (PVC) Plastic Drain, Waste, and Vent (DWV) Pipe and Fittings Having Post-Industrial Recycle Content
- ASTM D2122 Standard Test Method for Determining Dimensions of Thermoplastic Pipe and Fittings
- ASTM D2122 Standard Test Method for Determining Dimensions of Thermoplastic Pipe and Fittings
- ASTM F2390 Standard Specification for Poly(Vinyl Chloride) (PVC) Plastic Drain, Waste, and Vent (DWV) Pipe and Fittings Having Post-Industrial Recycle Content
- ASTM F412 Standard Terminology Relating to Plastic Piping Systems
- ASTM D2105 Standard Test Method for Longitudinal Tensile Properties of “Fiberglass” (Glass-Fiber- Reinforced Thermosetting-Resin) Pipe and Tube
- ASTM F412 Standard Terminology Relating to Plastic Piping Systems
- ASTM F2390 Standard Specification for Poly(Vinyl Chloride) (PVC) Plastic Drain, Waste, and Vent (DWV) Pipe and Fittings Having Post-Industrial Recycle Content
- ASTM F2390 Standard Specification for Poly(Vinyl Chloride) (PVC) Plastic Drain, Waste, and Vent (DWV) Pipe and Fittings Having Post-Industrial Recycle Content
- ASTM F412 Standard Terminology Relating to Plastic Piping Systems
- ASTM D2105 Standard Test Method for Longitudinal Tensile Properties of “Fiberglass” (Glass-Fiber- Reinforced Thermosetting-Resin) Pipe and Tube
- ASTM F412 Standard Terminology Relating to Plastic Piping Systems
- ASTM D2105 Standard Test Method for Longitudinal Tensile Properties of “Fiberglass” (Glass-Fiber- Reinforced Thermosetting-Resin) Pipe and Tube
- ASTM E4 Standard Practices for Force Verification of Testing Machines
- ASTM E855 Standard Test Methods for Bend Testing of Metallic Flat Materials for Spring Applications Involving Static Loading
- ASTM E691 Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method
- ASTM E1362 Standard Test Methods for Calibration of Non-Concentrator Photovoltaic Non-Primary Reference Cells
- Картотека зарубежных и международных стандартов
ASTM International
Standard Test Method for Determination of the Spectral Mismatch Parameter Between a Photovoltaic Device and a Photovoltaic Reference Cell
N E973
Annotation
This test method provides a procedure for the determination of a spectral mismatch parameter used in performance testing of photovoltaic devices.
The spectral mismatch parameter is a measure of the error introduced in the testing of a photovoltaic device that is caused by the photovoltaic device under test and the photovoltaic reference cell having non-identical quantum efficiencies, as well as mismatch between the test light source and the reference spectral irradiance distribution to which the photovoltaic reference cell was calibrated.
Examples of reference spectral irradiance distributions are Tables E490 or G173.
The spectral mismatch parameter can be used to correct photovoltaic performance data for spectral mismatch error.
Temperature-dependent quantum efficiencies are used to quantify the effects of temperature differences between test conditions and reporting conditions.
This test method is intended for use with linear photovoltaic devices in which short-circuit is directly proportional to incident irradiance.
The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.



