ASTM D1943 Standard Test Method for Alpha Particle Radioactivity of Water
Данный раздел/документ содержится в продуктах:
- Техэксперт: Машиностроительный комплекс
- Картотека зарубежных и международных стандартов
- ASTM D7202 Standard Test Method for Determination of Beryllium in the Workplace by Extraction and Optical Fluorescence Detection
- 13
- ASTM E4 Standard Practices for Force Verification of Testing Machines
- ASTM E855 Standard Test Methods for Bend Testing of Metallic Flat Materials for Spring Applications Involving Static Loading
- ASTM E691 Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method
- ASTM E855 Standard Test Methods for Bend Testing of Metallic Flat Materials for Spring Applications Involving Static Loading
- ASTM E855 Standard Test Methods for Bend Testing of Metallic Flat Materials for Spring Applications Involving Static Loading
- ASTM E691 Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method
- ASTM E691 Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method
- ASTM E70 Standard Test Method for pH of Aqueous Solutions With the Glass Electrode
- ULC CAN/ULC-S563-06 STANDARD FOR CATEGORY 3 FILM-FORMING FLUOROPROTEIN (FFFP) FOAM LIQUID CONCENTRATES - Second Edition
- ULC ULC-S564-06 STANDARD FOR CATEGORIES 1 AND 2 FOAM LIQUID CONCENTRATES - Second Edition
- ULC CAN/ULC-S560-06 STANDARD FOR CATEGORY 3 AQUEOUS FILM-FORMING FOAM (AFFF) LIQUID CONCENTRATES - Second Edition
- Картотека зарубежных и международных стандартов
ASTM International
Standard Test Method for Alpha Particle Radioactivity of Water
N D1943
Annotation
This test method covers the measurement of alpha particle activity of water. It is applicable to nuclides that emit alpha particles with energies above 3.9 MeV and at activity levels above 0.02 Bq/mL (540 pCi/L) of radioactive homogeneous water. This test method is not applicable to samples containing alpha-emitting radionuclides that are volatile under conditions of the analysis.
This test method can be used for either absolute or relative determinations. In tracer work, the results may be expressed by comparison with a standard that is defined to be 100 %. For radioassay, data may be expressed in terms of alpha disintegration rates after calibration with a suitable standard. General information on radioactivity and measurement of radiation has been published 2 and summarized in Practice D3648.
This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
2 Friedlander, G., et al., Nuclear and Radiochemistry, 3rd Ed., John Wiley and Sons, Inc., New York, NY, 1981.
Price,W. J., Nuclear Radiation Detection, 2nd Ed., McGraw-Hill Book Co., Inc., New York, NY, 1964.
Lapp, R. E., and Andrews, H. L., Nuclear Radiation Physics, 4th Ed., Prentice-Hall Inc., New York, NY, 1972.
Overman, R. T., and Clark, H. M., Radioisotope Techniques, McGraw-Hill Book Co., Inc., New York, NY, 1960.



