ASTM C1234 Standard Practice for Preparation of Oils and Oily Waste Samples by High- Pressure, High-Temperature Digestion for Trace Element Determinations
Данный раздел/документ содержится в продуктах:
- Техэксперт: Машиностроительный комплекс
- Картотека зарубежных и международных стандартов
- ASTM D7202 Standard Test Method for Determination of Beryllium in the Workplace by Extraction and Optical Fluorescence Detection
- 13
- ASTM D7202 Standard Test Method for Determination of Beryllium in the Workplace by Extraction and Optical Fluorescence Detection
- 13.040
- ASTM D7202 Standard Test Method for Determination of Beryllium in the Workplace by Extraction and Optical Fluorescence Detection
- 13.040.30
- ASTM E691 Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method
- ASTM E70 Standard Test Method for pH of Aqueous Solutions With the Glass Electrode
- ULC CAN/ULC-S563-06 STANDARD FOR CATEGORY 3 FILM-FORMING FLUOROPROTEIN (FFFP) FOAM LIQUID CONCENTRATES - Second Edition
- ULC ULC-S564-06 STANDARD FOR CATEGORIES 1 AND 2 FOAM LIQUID CONCENTRATES - Second Edition
- ULC CAN/ULC-S563-06 STANDARD FOR CATEGORY 3 FILM-FORMING FLUOROPROTEIN (FFFP) FOAM LIQUID CONCENTRATES - Second Edition
- ASTM E70 Standard Test Method for pH of Aqueous Solutions With the Glass Electrode
- ASTM E70 Standard Test Method for pH of Aqueous Solutions With the Glass Electrode
- ULC CAN/ULC-S563-06 STANDARD FOR CATEGORY 3 FILM-FORMING FLUOROPROTEIN (FFFP) FOAM LIQUID CONCENTRATES - Second Edition
- ULC ULC-S564-06 STANDARD FOR CATEGORIES 1 AND 2 FOAM LIQUID CONCENTRATES - Second Edition
- ULC CAN/ULC-S563-06 STANDARD FOR CATEGORY 3 FILM-FORMING FLUOROPROTEIN (FFFP) FOAM LIQUID CONCENTRATES - Second Edition
- ULC CAN/ULC-S563-06 STANDARD FOR CATEGORY 3 FILM-FORMING FLUOROPROTEIN (FFFP) FOAM LIQUID CONCENTRATES - Second Edition
- ULC ULC-S564-06 STANDARD FOR CATEGORIES 1 AND 2 FOAM LIQUID CONCENTRATES - Second Edition
- ULC ULC-S564-06 STANDARD FOR CATEGORIES 1 AND 2 FOAM LIQUID CONCENTRATES - Second Edition
- ULC CAN/ULC-S560-06 STANDARD FOR CATEGORY 3 AQUEOUS FILM-FORMING FOAM (AFFF) LIQUID CONCENTRATES - Second Edition
- ASTM D6010 Standard Practice for Closed Vessel Microwave Solvent Extraction of Organic Compounds from Solid Matrices
- ASTM D7876 Standard Practice for Practice for Sample Decomposition Using Microwave Heating (With or Without Prior Ashing) for Atomic Spectroscopic Elemental Determination in Petroleum Products and Lubricants
- Картотека зарубежных и международных стандартов
ASTM International
Standard Practice for Preparation of Oils and Oily Waste Samples by High- Pressure, High-Temperature Digestion for Trace Element Determinations
N C1234
Annotation
This practice covers a high-pressure, high-temperature digestion technique using the high-pressure asher (HPA) for preparation of oils and oily waste specimens for determination of up to 28 different elements by inductively coupled plasmaatomic emission plasma spectroscopy (ICP-AES), cold-vapor atomic absorption spectroscopy (CVAAS), and graphite furnace atomic absorption spectroscopy (GFAAS), inductively coupled plasma-mass spectrometry (ICPMS), and radiochemical methods. Oily and high-percentage organic waste streams from nuclear and non-nuclear manufacturing processes can be successfully prepared for trace element determinations by ICP-AES, CVAAS, and GFAAS. This practice is applicable to the determination of total trace elements in these mixed wastes. Specimens prepared by this practice can be used to characterize organic mixed waste streams received by hazardous waste treatment incinerators and for total element characterization of the waste streams.
This practice is applicable only to organic waste streams that contain radioactivity levels that do not require special personnel or environmental protection from radioactivity or other acute hazards.
A list of elements determined in oily waste streams is found in Table 1.
This practice has been used successfully to completely digest a large variety of oils and oily mixed waste streams from nuclear processing facilities. While the practice has been used to report data on up to 28 trace elements, its success should not be expected for all analytes in every specimen. The overall nature of these oily wastes tends to be heterogeneous that can affect the results. Homogeneity of the prepared sample is critical to the precision and quality of the results.
This practice is designed to be applicable to samples whose preparation practices are not defined, or not suitable, by other regulatory procedures or requirements, such as the U.S. Environmental Protection Agency (EPA) SW-846 and EPA- 600/4-79-020 documents. This digestion practice is designed to provide a high level of accuracy and precision, but does not replace or override any regulatory requirements for sample preparation.



