ASTM D1666 Standard Test Methods for Conducting Machining Tests of Wood and Wood-Base Panel Materials
Данный раздел/документ содержится в продуктах:
- Техэксперт: Машиностроительный комплекс
- Картотека зарубежных и международных стандартов
- ASTM D7202 Standard Test Method for Determination of Beryllium in the Workplace by Extraction and Optical Fluorescence Detection
- ASTM E177 Standard Practice for Use of the Terms Precision and Bias in ASTM Test Methods
- 13
- ASTM D7202 Standard Test Method for Determination of Beryllium in the Workplace by Extraction and Optical Fluorescence Detection
- ASTM E177 Standard Practice for Use of the Terms Precision and Bias in ASTM Test Methods
- 13.040
- ASTM D7202 Standard Test Method for Determination of Beryllium in the Workplace by Extraction and Optical Fluorescence Detection
- ASTM E177 Standard Practice for Use of the Terms Precision and Bias in ASTM Test Methods
- 13.040.30
- ASTM D7202 Standard Test Method for Determination of Beryllium in the Workplace by Extraction and Optical Fluorescence Detection
- ASTM E177 Standard Practice for Use of the Terms Precision and Bias in ASTM Test Methods
- ASTM D7202 Standard Test Method for Determination of Beryllium in the Workplace by Extraction and Optical Fluorescence Detection
- ASTM D7202 Standard Test Method for Determination of Beryllium in the Workplace by Extraction and Optical Fluorescence Detection
- ASTM D7202 Standard Test Method for Determination of Beryllium in the Workplace by Extraction and Optical Fluorescence Detection
- ASTM E1525 Standard Guide for Designing Biological Tests with Sediments
- ASTM E2591 Standard Guide for Conducting Whole Sediment Toxicity Tests with Amphibians
- ASTM E177 Standard Practice for Use of the Terms Precision and Bias in ASTM Test Methods
- ASTM E2591 Standard Guide for Conducting Whole Sediment Toxicity Tests with Amphibians
- ASTM E2591 Standard Guide for Conducting Whole Sediment Toxicity Tests with Amphibians
- ASTM E177 Standard Practice for Use of the Terms Precision and Bias in ASTM Test Methods
- ASTM E691 Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method
- ASTM E855 Standard Test Methods for Bend Testing of Metallic Flat Materials for Spring Applications Involving Static Loading
- ASTM E4 Standard Practices for Force Verification of Testing Machines
- ASTM D1761 Standard Test Methods for Mechanical Fasteners in Wood
- ASTM D5456 REV B Standard Specification for Evaluation of Structural Composite Lumber Products
- ASTM D7202 Standard Test Method for Determination of Beryllium in the Workplace by Extraction and Optical Fluorescence Detection
- Картотека зарубежных и международных стандартов
ASTM International
Standard Test Methods for Conducting Machining Tests of Wood and Wood-Base Panel Materials
N D1666
Annotation
These test methods cover procedures for planing, routing/shaping, turning, mortising, boring, and sanding, all of which are common wood-working operations used in the manufacture of wood products. These tests apply, in different degrees, to two general classes of materials:
Wood in the form of lumber, and
Wood-base panel materials such as plywood and wood-base fiber and particle panels.
Because of the importance of planing, some of the variables that affect the results of this operation are explored with a view to determining optimum conditions. In most of the other tests, however, it is necessary to limit the work to one set of fairly typical commercial conditions in which all the different woods are treated alike.
Several factors enter into any complete appraisal of the machining properties of a given wood or wood-base panel. Quality of finished surface is recommended as the basis for evaluation of machining properties. Rate of dulling of cutting tools and power consumed in cutting are also important considerations but are beyond the scope of these test methods.
Although the methods presented include the results of progressive developments in the evaluation of machining properties, further improvements may be anticipated. For example, by present procedures, quality of the finished surface is evaluated by visual inspection, but as new mechanical or physical techniques become available that will afford improved precision of evaluation, they should be employed.
The values stated in inch-pound units are to be regarded as the standard. The metric equivalents of inch-pound units may be approximate.



