ASTM E1876 Standard Test Method for Dynamic Young’s Modulus, Shear Modulus, and Poisson’s Ratio by Impulse Excitation of Vibration
Данный раздел/документ содержится в продуктах:
- Техэксперт: Машиностроительный комплекс
- Картотека зарубежных и международных стандартов
- ASTM D7202 Standard Test Method for Determination of Beryllium in the Workplace by Extraction and Optical Fluorescence Detection
- ASTM E177 Standard Practice for Use of the Terms Precision and Bias in ASTM Test Methods
- ASTM E691 Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method
- ASTM E855 Standard Test Methods for Bend Testing of Metallic Flat Materials for Spring Applications Involving Static Loading
- ASTM E4 Standard Practices for Force Verification of Testing Machines
- ASTM D7779 Standard Test Method for Determination of Fracture Toughness of Graphite at Ambient Temperature
- ASTM E2309/E2309M Standard Practices for Verification of Displacement Measuring Systems and Devices Used in Material Testing Machines
- ASTM F3141 Standard Guide for Total Knee Replacement Loading Profiles
- ASTM E2624 Standard Practice for Torque Calibration of Testing Machines and Devices
- ASTM F3141 Standard Guide for Total Knee Replacement Loading Profiles
- ASTM E2309/E2309M Standard Practices for Verification of Displacement Measuring Systems and Devices Used in Material Testing Machines
- ASTM D7779 Standard Test Method for Determination of Fracture Toughness of Graphite at Ambient Temperature
- ASTM E4 Standard Practices for Force Verification of Testing Machines
- ASTM E855 Standard Test Methods for Bend Testing of Metallic Flat Materials for Spring Applications Involving Static Loading
- ASTM E691 Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method
- ASTM E177 Standard Practice for Use of the Terms Precision and Bias in ASTM Test Methods
- 13
- ASTM D7202 Standard Test Method for Determination of Beryllium in the Workplace by Extraction and Optical Fluorescence Detection
- ASTM E177 Standard Practice for Use of the Terms Precision and Bias in ASTM Test Methods
- ASTM E691 Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method
- ASTM E855 Standard Test Methods for Bend Testing of Metallic Flat Materials for Spring Applications Involving Static Loading
- ASTM E4 Standard Practices for Force Verification of Testing Machines
- ASTM D7779 Standard Test Method for Determination of Fracture Toughness of Graphite at Ambient Temperature
- ASTM E2309/E2309M Standard Practices for Verification of Displacement Measuring Systems and Devices Used in Material Testing Machines
- ASTM F3141 Standard Guide for Total Knee Replacement Loading Profiles
- ASTM E2624 Standard Practice for Torque Calibration of Testing Machines and Devices
- ASTM F3141 Standard Guide for Total Knee Replacement Loading Profiles
- ASTM E2309/E2309M Standard Practices for Verification of Displacement Measuring Systems and Devices Used in Material Testing Machines
- ASTM D7779 Standard Test Method for Determination of Fracture Toughness of Graphite at Ambient Temperature
- ASTM E4 Standard Practices for Force Verification of Testing Machines
- ASTM E855 Standard Test Methods for Bend Testing of Metallic Flat Materials for Spring Applications Involving Static Loading
- ASTM E691 Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method
- ASTM E177 Standard Practice for Use of the Terms Precision and Bias in ASTM Test Methods
- ASTM D7202 Standard Test Method for Determination of Beryllium in the Workplace by Extraction and Optical Fluorescence Detection
- ASTM E691 Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method
- ASTM E855 Standard Test Methods for Bend Testing of Metallic Flat Materials for Spring Applications Involving Static Loading
- ASTM E4 Standard Practices for Force Verification of Testing Machines
- ASTM D7779 Standard Test Method for Determination of Fracture Toughness of Graphite at Ambient Temperature
- ASTM E2309/E2309M Standard Practices for Verification of Displacement Measuring Systems and Devices Used in Material Testing Machines
- ASTM F3141 Standard Guide for Total Knee Replacement Loading Profiles
- ASTM E2624 Standard Practice for Torque Calibration of Testing Machines and Devices
- ASTM F3141 Standard Guide for Total Knee Replacement Loading Profiles
- ASTM E2309/E2309M Standard Practices for Verification of Displacement Measuring Systems and Devices Used in Material Testing Machines
- ASTM D7779 Standard Test Method for Determination of Fracture Toughness of Graphite at Ambient Temperature
- ASTM E4 Standard Practices for Force Verification of Testing Machines
- ASTM E855 Standard Test Methods for Bend Testing of Metallic Flat Materials for Spring Applications Involving Static Loading
- ASTM E855 Standard Test Methods for Bend Testing of Metallic Flat Materials for Spring Applications Involving Static Loading
- ASTM E4 Standard Practices for Force Verification of Testing Machines
- ASTM D7779 Standard Test Method for Determination of Fracture Toughness of Graphite at Ambient Temperature
- ASTM E2309/E2309M Standard Practices for Verification of Displacement Measuring Systems and Devices Used in Material Testing Machines
- ASTM F3141 Standard Guide for Total Knee Replacement Loading Profiles
- ASTM E2624 Standard Practice for Torque Calibration of Testing Machines and Devices
- ASTM F3141 Standard Guide for Total Knee Replacement Loading Profiles
- ASTM E2309/E2309M Standard Practices for Verification of Displacement Measuring Systems and Devices Used in Material Testing Machines
- ASTM D7779 Standard Test Method for Determination of Fracture Toughness of Graphite at Ambient Temperature
- ASTM E4 Standard Practices for Force Verification of Testing Machines
- ASTM E4 Standard Practices for Force Verification of Testing Machines
- ASTM D7779 Standard Test Method for Determination of Fracture Toughness of Graphite at Ambient Temperature
- ASTM E2309/E2309M Standard Practices for Verification of Displacement Measuring Systems and Devices Used in Material Testing Machines
- ASTM F3141 Standard Guide for Total Knee Replacement Loading Profiles
- ASTM E2624 Standard Practice for Torque Calibration of Testing Machines and Devices
- ASTM F3141 Standard Guide for Total Knee Replacement Loading Profiles
- ASTM E2309/E2309M Standard Practices for Verification of Displacement Measuring Systems and Devices Used in Material Testing Machines
- ASTM D7779 Standard Test Method for Determination of Fracture Toughness of Graphite at Ambient Temperature
- ASTM D7779 Standard Test Method for Determination of Fracture Toughness of Graphite at Ambient Temperature
- ASTM E2309/E2309M Standard Practices for Verification of Displacement Measuring Systems and Devices Used in Material Testing Machines
- ASTM F3141 Standard Guide for Total Knee Replacement Loading Profiles
- ASTM E2624 Standard Practice for Torque Calibration of Testing Machines and Devices
- ASTM F3141 Standard Guide for Total Knee Replacement Loading Profiles
- ASTM E2309/E2309M Standard Practices for Verification of Displacement Measuring Systems and Devices Used in Material Testing Machines
- ASTM E2309/E2309M Standard Practices for Verification of Displacement Measuring Systems and Devices Used in Material Testing Machines
- ASTM F3141 Standard Guide for Total Knee Replacement Loading Profiles
- ASTM E2624 Standard Practice for Torque Calibration of Testing Machines and Devices
- ASTM F3141 Standard Guide for Total Knee Replacement Loading Profiles
- ASTM F3141 Standard Guide for Total Knee Replacement Loading Profiles
- ASTM E2624 Standard Practice for Torque Calibration of Testing Machines and Devices
- ASTM E2624 Standard Practice for Torque Calibration of Testing Machines and Devices
- ASTM E2428 REV A Standard Practice for Calibration and Verification of Torque Transducers
- ASTM E2624 Standard Practice for Torque Calibration of Testing Machines and Devices
- ASTM E2207 Standard Practice for Strain-Controlled Axial-Torsional Fatigue Testing with Thin - Walled Tubular Specimens
- ASTM E1417/E1417M Standard Practice for Liquid Penetrant Testing
- ASTM F2094/F2094M Standard Specification for Silicon Nitride Bearing Balls
- ASTM C1198 Standard Test Method for Dynamic Young’s Modulus, Shear Modulus, and Poisson’s Ratio for Advanced Ceramics by Sonic Resonance
- ASTM D7202 Standard Test Method for Determination of Beryllium in the Workplace by Extraction and Optical Fluorescence Detection
- Картотека зарубежных и международных стандартов
ASTM International
Standard Test Method for Dynamic Young’s Modulus, Shear Modulus, and Poisson’s Ratio by Impulse Excitation of Vibration
N E1876
Annotation
This test method covers determination of the dynamic elastic properties of elastic materials at ambient temperatures. Specimens of these materials possess specific mechanical resonant frequencies that are determined by the elastic modulus, mass, and geometry of the test specimen. The dynamic elastic properties of a material can therefore be computed if the geometry, mass, and mechanical resonant frequencies of a suitable (rectangular or cylindrical geometry) test specimen of that material can be measured. Dynamic Young's modulus is determined using the resonant frequency in either the flexural or longitudinal mode of vibration. The dynamic shear modulus, or modulus of rigidity, is found using torsional resonant vibrations. Dynamic Young's modulus and dynamic shear modulus are used to compute Poisson's ratio.
Although not specifically described herein, this test method can also be performed at cryogenic and high temperatures with suitable equipment modifications and appropriate modifications to the calculations to compensate for thermal expansion.
There are material specific ASTM standards that cover the determination of resonance frequencies and elastic properties of specific materials by sonic resonance or by impulse excitation of vibration. Test Methods C 215, C 623, C 747, C 848, C 1198, and C 1259 may differ from this test method in several areas (for example; sample size, dimensional tolerances, sample preparation). The testing of these materials shall be done in compliance with these material specific standards. Where possible, the procedures, sample specifications and calculations are consistent with these test methods.
The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.



