ASTM D7136/D7136M Standard Test Method for Measuring the Damage Resistance of a Fiber-Reinforced Polymer Matrix Composite to a Drop-Weight Impact Event
Данный раздел/документ содержится в продуктах:
- Техэксперт: Машиностроительный комплекс
- Картотека зарубежных и международных стандартов
- ASTM D7202 Standard Test Method for Determination of Beryllium in the Workplace by Extraction and Optical Fluorescence Detection
- 13
- ASTM D7202 Standard Test Method for Determination of Beryllium in the Workplace by Extraction and Optical Fluorescence Detection
- 13.040
- ASTM D7202 Standard Test Method for Determination of Beryllium in the Workplace by Extraction and Optical Fluorescence Detection
- 13.040.30
- ASTM D7202 Standard Test Method for Determination of Beryllium in the Workplace by Extraction and Optical Fluorescence Detection
- ASTM E1023 Standard Guide for Assessing the Hazard of a Material to Aquatic Organisms and Their Uses
- ASTM E2122 Standard Guide for Conducting In-situ Field Bioassays With Caged Bivalves
- ASTM E1525 Standard Guide for Designing Biological Tests with Sediments
- ASTM E2122 Standard Guide for Conducting In-situ Field Bioassays With Caged Bivalves
- ASTM E2122 Standard Guide for Conducting In-situ Field Bioassays With Caged Bivalves
- ASTM E1525 Standard Guide for Designing Biological Tests with Sediments
- ASTM E1525 Standard Guide for Designing Biological Tests with Sediments
- ASTM E2591 Standard Guide for Conducting Whole Sediment Toxicity Tests with Amphibians
- ASTM E691 Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method
- ASTM E855 Standard Test Methods for Bend Testing of Metallic Flat Materials for Spring Applications Involving Static Loading
- ASTM E4 Standard Practices for Force Verification of Testing Machines
- Картотека зарубежных и международных стандартов
ASTM International
Standard Test Method for Measuring the Damage Resistance of a Fiber-Reinforced Polymer Matrix Composite to a Drop-Weight Impact Event
N D7136/D7136M
Annotation
This test method determines the damage resistance of multidirectional polymer matrix composite laminated plates subjected to a drop-weight impact event. The composite material forms are limited to continuous-fiber reinforced polymer matrix composites, with the range of acceptable test laminates and thicknesses defined in 8.2.
Instructions for modifying these procedures to determine damage resistance properties of sandwich constructions are provided in Practice D7766/D7766M.
A flat, rectangular composite plate is subjected to an out-of-plane, concentrated impact using a drop-weight device with a hemispherical impactor. The potential energy of the drop-weight, as defined by the mass and drop height of the impactor, is specified prior to test. Equipment and procedures are provided for optional measurement of contact force and velocity during the impact event. The damage resistance is quantified in terms of the resulting size and type of damage in the specimen.
The test method may be used to screen materials for damage resistance, or to inflict damage into a specimen for subsequent damage tolerance testing. When the impacted plate is tested in accordance with Test Method D7137/D7137M, the overall test sequence is commonly referred to as the Compression After Impact (CAI) method. Quasi-static indentation per Test Method D6264/D6264M may be used as an alternate method of creating damage from an out-of-plane force and measuring damage resistance properties.
The damage resistance properties generated by this test method are highly dependent upon several factors, which include specimen geometry, layup, impactor geometry, impactor mass, impact force, impact energy, and boundary conditions. Thus, results are generally not scalable to other configurations, and are particular to the combination of geometric and physical conditions tested.



