ASTM C598 Standard Test Method for Annealing Point and Strain Point of Glass by Beam Bending
Данный раздел/документ содержится в продуктах:
- Техэксперт: Машиностроительный комплекс
- Картотека зарубежных и международных стандартов
- ASTM C600 Standard Test Method of Thermal Shock Test on Glass Pipe
- ASTM E228 Standard Test Method for Linear Thermal Expansion of Solid Materials With a Push- Rod Dilatometer
- ASTM F29 Standard Specification for Dumet Wire for Glass-to-Metal Seal Applications
- ASTM F14 Standard Practice for Making and Testing Reference Glass-Metal Bead-Seal
- ASTM F29 Standard Specification for Dumet Wire for Glass-to-Metal Seal Applications
- ASTM E228 Standard Test Method for Linear Thermal Expansion of Solid Materials With a Push- Rod Dilatometer
- 23
- ASTM C600 Standard Test Method of Thermal Shock Test on Glass Pipe
- ASTM E228 Standard Test Method for Linear Thermal Expansion of Solid Materials With a Push- Rod Dilatometer
- ASTM F29 Standard Specification for Dumet Wire for Glass-to-Metal Seal Applications
- ASTM F14 Standard Practice for Making and Testing Reference Glass-Metal Bead-Seal
- ASTM F29 Standard Specification for Dumet Wire for Glass-to-Metal Seal Applications
- ASTM E228 Standard Test Method for Linear Thermal Expansion of Solid Materials With a Push- Rod Dilatometer
- ASTM C600 Standard Test Method of Thermal Shock Test on Glass Pipe
- ASTM D2105 Standard Test Method for Longitudinal Tensile Properties of “Fiberglass” (Glass-Fiber- Reinforced Thermosetting-Resin) Pipe and Tube
- ASTM E4 Standard Practices for Force Verification of Testing Machines
- ASTM E855 Standard Test Methods for Bend Testing of Metallic Flat Materials for Spring Applications Involving Static Loading
- ASTM E691 Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method
- ASTM D7542 Standard Test Method for Air Oxidation of Carbon and Graphite in the Kinetic Regime
- ASTM C1793 Standard Guide for Development of Specifications for Fiber Reinforced Silicon Carbide-Silicon Carbide Composite Structures for Nuclear Applications
- ASTM E228 Standard Test Method for Linear Thermal Expansion of Solid Materials With a Push- Rod Dilatometer
- ASTM F29 Standard Specification for Dumet Wire for Glass-to-Metal Seal Applications
- ASTM F14 Standard Practice for Making and Testing Reference Glass-Metal Bead-Seal
- ASTM F29 Standard Specification for Dumet Wire for Glass-to-Metal Seal Applications
- ASTM E228 Standard Test Method for Linear Thermal Expansion of Solid Materials With a Push- Rod Dilatometer
- ASTM C1793 Standard Guide for Development of Specifications for Fiber Reinforced Silicon Carbide-Silicon Carbide Composite Structures for Nuclear Applications
- ASTM D7542 Standard Test Method for Air Oxidation of Carbon and Graphite in the Kinetic Regime
- ASTM E691 Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method
- ASTM E855 Standard Test Methods for Bend Testing of Metallic Flat Materials for Spring Applications Involving Static Loading
- ASTM E4 Standard Practices for Force Verification of Testing Machines
- ASTM E4 Standard Practices for Force Verification of Testing Machines
- ASTM E855 Standard Test Methods for Bend Testing of Metallic Flat Materials for Spring Applications Involving Static Loading
- ASTM E691 Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method
- ASTM D7542 Standard Test Method for Air Oxidation of Carbon and Graphite in the Kinetic Regime
- ASTM C1793 Standard Guide for Development of Specifications for Fiber Reinforced Silicon Carbide-Silicon Carbide Composite Structures for Nuclear Applications
- ASTM E228 Standard Test Method for Linear Thermal Expansion of Solid Materials With a Push- Rod Dilatometer
- ASTM F29 Standard Specification for Dumet Wire for Glass-to-Metal Seal Applications
- ASTM F14 Standard Practice for Making and Testing Reference Glass-Metal Bead-Seal
- ASTM F29 Standard Specification for Dumet Wire for Glass-to-Metal Seal Applications
- ASTM E228 Standard Test Method for Linear Thermal Expansion of Solid Materials With a Push- Rod Dilatometer
- ASTM C1793 Standard Guide for Development of Specifications for Fiber Reinforced Silicon Carbide-Silicon Carbide Composite Structures for Nuclear Applications
- ASTM D7542 Standard Test Method for Air Oxidation of Carbon and Graphite in the Kinetic Regime
- ASTM E691 Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method
- ASTM E855 Standard Test Methods for Bend Testing of Metallic Flat Materials for Spring Applications Involving Static Loading
- ASTM E855 Standard Test Methods for Bend Testing of Metallic Flat Materials for Spring Applications Involving Static Loading
- ASTM E691 Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method
- ASTM D7542 Standard Test Method for Air Oxidation of Carbon and Graphite in the Kinetic Regime
- ASTM C1793 Standard Guide for Development of Specifications for Fiber Reinforced Silicon Carbide-Silicon Carbide Composite Structures for Nuclear Applications
- ASTM E228 Standard Test Method for Linear Thermal Expansion of Solid Materials With a Push- Rod Dilatometer
- ASTM F29 Standard Specification for Dumet Wire for Glass-to-Metal Seal Applications
- ASTM F14 Standard Practice for Making and Testing Reference Glass-Metal Bead-Seal
- ASTM F29 Standard Specification for Dumet Wire for Glass-to-Metal Seal Applications
- ASTM E228 Standard Test Method for Linear Thermal Expansion of Solid Materials With a Push- Rod Dilatometer
- ASTM C1793 Standard Guide for Development of Specifications for Fiber Reinforced Silicon Carbide-Silicon Carbide Composite Structures for Nuclear Applications
- ASTM D7542 Standard Test Method for Air Oxidation of Carbon and Graphite in the Kinetic Regime
- ASTM E691 Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method
- ASTM E691 Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method
- ASTM D7542 Standard Test Method for Air Oxidation of Carbon and Graphite in the Kinetic Regime
- ASTM C1793 Standard Guide for Development of Specifications for Fiber Reinforced Silicon Carbide-Silicon Carbide Composite Structures for Nuclear Applications
- ASTM E228 Standard Test Method for Linear Thermal Expansion of Solid Materials With a Push- Rod Dilatometer
- ASTM F29 Standard Specification for Dumet Wire for Glass-to-Metal Seal Applications
- ASTM F14 Standard Practice for Making and Testing Reference Glass-Metal Bead-Seal
- ASTM F29 Standard Specification for Dumet Wire for Glass-to-Metal Seal Applications
- ASTM E228 Standard Test Method for Linear Thermal Expansion of Solid Materials With a Push- Rod Dilatometer
- ASTM C1793 Standard Guide for Development of Specifications for Fiber Reinforced Silicon Carbide-Silicon Carbide Composite Structures for Nuclear Applications
- ASTM D7542 Standard Test Method for Air Oxidation of Carbon and Graphite in the Kinetic Regime
- ASTM D7542 Standard Test Method for Air Oxidation of Carbon and Graphite in the Kinetic Regime
- ASTM C1793 Standard Guide for Development of Specifications for Fiber Reinforced Silicon Carbide-Silicon Carbide Composite Structures for Nuclear Applications
- ASTM E228 Standard Test Method for Linear Thermal Expansion of Solid Materials With a Push- Rod Dilatometer
- ASTM F29 Standard Specification for Dumet Wire for Glass-to-Metal Seal Applications
- ASTM F14 Standard Practice for Making and Testing Reference Glass-Metal Bead-Seal
- ASTM F29 Standard Specification for Dumet Wire for Glass-to-Metal Seal Applications
- ASTM E228 Standard Test Method for Linear Thermal Expansion of Solid Materials With a Push- Rod Dilatometer
- ASTM C1793 Standard Guide for Development of Specifications for Fiber Reinforced Silicon Carbide-Silicon Carbide Composite Structures for Nuclear Applications
- ASTM C1793 Standard Guide for Development of Specifications for Fiber Reinforced Silicon Carbide-Silicon Carbide Composite Structures for Nuclear Applications
- ASTM E228 Standard Test Method for Linear Thermal Expansion of Solid Materials With a Push- Rod Dilatometer
- ASTM F29 Standard Specification for Dumet Wire for Glass-to-Metal Seal Applications
- ASTM F14 Standard Practice for Making and Testing Reference Glass-Metal Bead-Seal
- ASTM F29 Standard Specification for Dumet Wire for Glass-to-Metal Seal Applications
- ASTM E228 Standard Test Method for Linear Thermal Expansion of Solid Materials With a Push- Rod Dilatometer
- ASTM E228 Standard Test Method for Linear Thermal Expansion of Solid Materials With a Push- Rod Dilatometer
- ASTM F29 Standard Specification for Dumet Wire for Glass-to-Metal Seal Applications
- ASTM F14 Standard Practice for Making and Testing Reference Glass-Metal Bead-Seal
- ASTM F29 Standard Specification for Dumet Wire for Glass-to-Metal Seal Applications
- ASTM F29 Standard Specification for Dumet Wire for Glass-to-Metal Seal Applications
- ASTM F14 Standard Practice for Making and Testing Reference Glass-Metal Bead-Seal
- ASTM F14 Standard Practice for Making and Testing Reference Glass-Metal Bead-Seal
- ASTM F218 Standard Test Method for Measuring Optical Retardation and Analyzing Stress in Glass
- ASTM F144 Standard Practice for Making Reference Glass-Metal Sandwich Seal and Testing for Expansion Characteristics by Polarimetric Methods
- ASTM F105 Standard Specification for Type 58 Borosilicate Sealing Glass
- ASTM F140 Standard Practice for Making Reference Glass-Metal Butt Seals and Testing for Expansion Characteristics by Polarimetric Methods
- ASTM F79 Standard Specification for Type 101 Sealing Glass
- ASTM C600 Standard Test Method of Thermal Shock Test on Glass Pipe
- Картотека зарубежных и международных стандартов
ASTM International
Standard Test Method for Annealing Point and Strain Point of Glass by Beam Bending
N C598
Annotation
This test method covers the determination of the annealing point and the strain point of a glass by measuring the rate of midpoint viscous bending of a simply loaded glass beam.2 However, at temperatures corresponding to the annealing and strain points, the viscosity of glass is highly time-dependent. Hence, any viscosities that might be derived or inferred from measurements by this procedure cannot be assumed to represent equilibrium structural conditions.
The annealing and strain points shall be obtained following a specified procedure after direct calibration of the apparatus using beams of standard glasses having known annealing and strain points such as those supplied and certified by the National Institute of Standards and Technology.3
This test method, as an alternative to Test Method C336 is particularly well suited for glasses that for one reason or another are not adaptable for flame working. It also has the advantages that thermal expansion and effective length corrections, common to the fiber elongation method, are eliminated.
The values stated in metric units are to be regarded as the standard. The values given in parentheses are for information only.
This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
2 Hagy, H. E., "Experimental Evaluation of Beam Bending Method of Determining Glass Viscosities in the Range 108 to 1015 Poises," Journal of the American Ceramic Society, Vol 46, No. 2, 1963, pp. 95–97.



