ASTM C1590 Standard Practice for Alternate Actinide Calibration for Inductively Coupled Plasma-Mass Spectrometry
Данный раздел/документ содержится в продуктах:
- Техэксперт: Машиностроительный комплекс
- Картотека зарубежных и международных стандартов
- ASTM C1816 Standard Practice for The Ion Exchange Separation of Small Volume Samples Containing Uranium, Americium, and Plutonium Prior to Isotopic Abundance and Content Analysis
- ASTM C1625 Standard Test Method for Uranium and Plutonium Concentrations and Isotopic Abundances by Thermal Ionization Mass Spectrometry
- 29
- ASTM C1816 Standard Practice for The Ion Exchange Separation of Small Volume Samples Containing Uranium, Americium, and Plutonium Prior to Isotopic Abundance and Content Analysis
- ASTM C1625 Standard Test Method for Uranium and Plutonium Concentrations and Isotopic Abundances by Thermal Ionization Mass Spectrometry
- 29.040
- ASTM C1816 Standard Practice for The Ion Exchange Separation of Small Volume Samples Containing Uranium, Americium, and Plutonium Prior to Isotopic Abundance and Content Analysis
- ASTM C1625 Standard Test Method for Uranium and Plutonium Concentrations and Isotopic Abundances by Thermal Ionization Mass Spectrometry
- 29.040.10
- ASTM C1816 Standard Practice for The Ion Exchange Separation of Small Volume Samples Containing Uranium, Americium, and Plutonium Prior to Isotopic Abundance and Content Analysis
- ASTM C1625 Standard Test Method for Uranium and Plutonium Concentrations and Isotopic Abundances by Thermal Ionization Mass Spectrometry
- ASTM C1816 Standard Practice for The Ion Exchange Separation of Small Volume Samples Containing Uranium, Americium, and Plutonium Prior to Isotopic Abundance and Content Analysis
- ASTM C1816 Standard Practice for The Ion Exchange Separation of Small Volume Samples Containing Uranium, Americium, and Plutonium Prior to Isotopic Abundance and Content Analysis
- ASTM C1816 Standard Practice for The Ion Exchange Separation of Small Volume Samples Containing Uranium, Americium, and Plutonium Prior to Isotopic Abundance and Content Analysis
- ASTM D7202 Standard Test Method for Determination of Beryllium in the Workplace by Extraction and Optical Fluorescence Detection
- ASTM D1193 Standard Specification for Reagent Water
- ASTM C1769 Standard Practice for Analysis of Spent Nuclear Fuel to Determine Selected Isotopes and Estimate Fuel Burnup
- ASTM C1625 Standard Test Method for Uranium and Plutonium Concentrations and Isotopic Abundances by Thermal Ionization Mass Spectrometry
- ASTM C1769 Standard Practice for Analysis of Spent Nuclear Fuel to Determine Selected Isotopes and Estimate Fuel Burnup
- ASTM D1193 Standard Specification for Reagent Water
- ASTM C1769 Standard Practice for Analysis of Spent Nuclear Fuel to Determine Selected Isotopes and Estimate Fuel Burnup
- ASTM C1625 Standard Test Method for Uranium and Plutonium Concentrations and Isotopic Abundances by Thermal Ionization Mass Spectrometry
- ASTM C1625 Standard Test Method for Uranium and Plutonium Concentrations and Isotopic Abundances by Thermal Ionization Mass Spectrometry
- ASTM C1068 Standard Guide for Qualification of Measurement Methods by a Laboratory Within the Nuclear Industry
- ASTM C758 Standard Test Methods for Chemical, Mass Spectrometric, Spectrochemical, Nuclear, and Radiochemical Analysis of Nuclear-Grade Plutonium Metal
- ASTM C1268 Standard Test Method for Quantitative Determination of American 241 in Plutonium by Gamma-Ray Spectrometry
- ASTM C1414 Standard Practice for The Separation of Americium from Plutonium by Ion Exchange
- ASTM C1816 Standard Practice for The Ion Exchange Separation of Small Volume Samples Containing Uranium, Americium, and Plutonium Prior to Isotopic Abundance and Content Analysis
- Картотека зарубежных и международных стандартов
ASTM International
Standard Practice for Alternate Actinide Calibration for Inductively Coupled Plasma-Mass Spectrometry
N C1590
Annotation
This practice provides guidance for an alternate linear calibration for the determination of selected actinide isotopes in appropriately prepared aqueous solutions by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). This alternate calibration is mass bias adjusted using thorium-232 (232Th) and uranium-238 (238U) standards. One of the benefits of this standard practice is the ability to calibrate for the analysis of highly radioactive actinides using calibration standards at much lower specific activities. Environmental laboratories may find this standard practice useful if facilities are not available to handle the highly radioactive standards of the individual actinides of interest.
The instrument response for a series of determinations of known concentration of 232Th and 238U defines the mass versus response relationship. For each standard concentration, the slope of the line defined by 232Th and 238U is used to derive linear calibration curves for each mass of interest using interference equations. The mass bias corrected calibration curves, although generated from interference equations, are specific to the instrument operating parameters and tuning in effect at the time of data acquisition. Because interference equations are part of the normal ICP-MS manufacturer's software package, this calibration methodology is widely applicable.
For this standard practice, the actinide atomic mass range that has been studied is from amu 232–244. Guidance for an extended range of amu 228–248 is given in this practice.
Using this practice, analyte concentrations are reported at each amu and not by element total (that is, 239Pu versus plutonium).
The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.



