ASTM D495 Standard Test Method for High-Voltage, Low-Current, Dry Arc Resistance of Solid Electrical Insulation
Данный раздел/документ содержится в продуктах:
- Техэксперт: Машиностроительный комплекс
- Картотека зарубежных и международных стандартов
- ASTM C600 Standard Test Method of Thermal Shock Test on Glass Pipe
- ASTM E228 Standard Test Method for Linear Thermal Expansion of Solid Materials With a Push- Rod Dilatometer
- ASTM F29 Standard Specification for Dumet Wire for Glass-to-Metal Seal Applications
- ASTM F14 Standard Practice for Making and Testing Reference Glass-Metal Bead-Seal
- ASTM F218 Standard Test Method for Measuring Optical Retardation and Analyzing Stress in Glass
- ASTM F144 Standard Practice for Making Reference Glass-Metal Sandwich Seal and Testing for Expansion Characteristics by Polarimetric Methods
- ASTM F218 Standard Test Method for Measuring Optical Retardation and Analyzing Stress in Glass
- ASTM F14 Standard Practice for Making and Testing Reference Glass-Metal Bead-Seal
- ASTM F29 Standard Specification for Dumet Wire for Glass-to-Metal Seal Applications
- ASTM E228 Standard Test Method for Linear Thermal Expansion of Solid Materials With a Push- Rod Dilatometer
- 23
- ASTM C600 Standard Test Method of Thermal Shock Test on Glass Pipe
- ASTM E228 Standard Test Method for Linear Thermal Expansion of Solid Materials With a Push- Rod Dilatometer
- ASTM F29 Standard Specification for Dumet Wire for Glass-to-Metal Seal Applications
- ASTM F14 Standard Practice for Making and Testing Reference Glass-Metal Bead-Seal
- ASTM F218 Standard Test Method for Measuring Optical Retardation and Analyzing Stress in Glass
- ASTM F144 Standard Practice for Making Reference Glass-Metal Sandwich Seal and Testing for Expansion Characteristics by Polarimetric Methods
- ASTM F218 Standard Test Method for Measuring Optical Retardation and Analyzing Stress in Glass
- ASTM F14 Standard Practice for Making and Testing Reference Glass-Metal Bead-Seal
- ASTM F29 Standard Specification for Dumet Wire for Glass-to-Metal Seal Applications
- ASTM E228 Standard Test Method for Linear Thermal Expansion of Solid Materials With a Push- Rod Dilatometer
- ASTM C600 Standard Test Method of Thermal Shock Test on Glass Pipe
- ASTM E4 Standard Practices for Force Verification of Testing Machines
- ASTM E855 Standard Test Methods for Bend Testing of Metallic Flat Materials for Spring Applications Involving Static Loading
- ASTM E691 Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method
- ASTM D7542 Standard Test Method for Air Oxidation of Carbon and Graphite in the Kinetic Regime
- ASTM C1793 Standard Guide for Development of Specifications for Fiber Reinforced Silicon Carbide-Silicon Carbide Composite Structures for Nuclear Applications
- ASTM E228 Standard Test Method for Linear Thermal Expansion of Solid Materials With a Push- Rod Dilatometer
- ASTM F29 Standard Specification for Dumet Wire for Glass-to-Metal Seal Applications
- ASTM F14 Standard Practice for Making and Testing Reference Glass-Metal Bead-Seal
- ASTM F218 Standard Test Method for Measuring Optical Retardation and Analyzing Stress in Glass
- ASTM F144 Standard Practice for Making Reference Glass-Metal Sandwich Seal and Testing for Expansion Characteristics by Polarimetric Methods
- ASTM F218 Standard Test Method for Measuring Optical Retardation and Analyzing Stress in Glass
- ASTM F14 Standard Practice for Making and Testing Reference Glass-Metal Bead-Seal
- ASTM F29 Standard Specification for Dumet Wire for Glass-to-Metal Seal Applications
- ASTM E228 Standard Test Method for Linear Thermal Expansion of Solid Materials With a Push- Rod Dilatometer
- ASTM C1793 Standard Guide for Development of Specifications for Fiber Reinforced Silicon Carbide-Silicon Carbide Composite Structures for Nuclear Applications
- ASTM D7542 Standard Test Method for Air Oxidation of Carbon and Graphite in the Kinetic Regime
- ASTM E691 Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method
- ASTM E855 Standard Test Methods for Bend Testing of Metallic Flat Materials for Spring Applications Involving Static Loading
- ASTM E855 Standard Test Methods for Bend Testing of Metallic Flat Materials for Spring Applications Involving Static Loading
- ASTM E691 Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method
- ASTM D7542 Standard Test Method for Air Oxidation of Carbon and Graphite in the Kinetic Regime
- ASTM C1793 Standard Guide for Development of Specifications for Fiber Reinforced Silicon Carbide-Silicon Carbide Composite Structures for Nuclear Applications
- ASTM E228 Standard Test Method for Linear Thermal Expansion of Solid Materials With a Push- Rod Dilatometer
- ASTM F29 Standard Specification for Dumet Wire for Glass-to-Metal Seal Applications
- ASTM F14 Standard Practice for Making and Testing Reference Glass-Metal Bead-Seal
- ASTM F218 Standard Test Method for Measuring Optical Retardation and Analyzing Stress in Glass
- ASTM F144 Standard Practice for Making Reference Glass-Metal Sandwich Seal and Testing for Expansion Characteristics by Polarimetric Methods
- ASTM F218 Standard Test Method for Measuring Optical Retardation and Analyzing Stress in Glass
- ASTM F14 Standard Practice for Making and Testing Reference Glass-Metal Bead-Seal
- ASTM F29 Standard Specification for Dumet Wire for Glass-to-Metal Seal Applications
- ASTM E228 Standard Test Method for Linear Thermal Expansion of Solid Materials With a Push- Rod Dilatometer
- ASTM C1793 Standard Guide for Development of Specifications for Fiber Reinforced Silicon Carbide-Silicon Carbide Composite Structures for Nuclear Applications
- ASTM D7542 Standard Test Method for Air Oxidation of Carbon and Graphite in the Kinetic Regime
- ASTM E691 Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method
- ASTM E691 Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method
- ASTM D7542 Standard Test Method for Air Oxidation of Carbon and Graphite in the Kinetic Regime
- ASTM C1793 Standard Guide for Development of Specifications for Fiber Reinforced Silicon Carbide-Silicon Carbide Composite Structures for Nuclear Applications
- ASTM E228 Standard Test Method for Linear Thermal Expansion of Solid Materials With a Push- Rod Dilatometer
- ASTM F29 Standard Specification for Dumet Wire for Glass-to-Metal Seal Applications
- ASTM F14 Standard Practice for Making and Testing Reference Glass-Metal Bead-Seal
- ASTM F218 Standard Test Method for Measuring Optical Retardation and Analyzing Stress in Glass
- ASTM F144 Standard Practice for Making Reference Glass-Metal Sandwich Seal and Testing for Expansion Characteristics by Polarimetric Methods
- ASTM F218 Standard Test Method for Measuring Optical Retardation and Analyzing Stress in Glass
- ASTM F14 Standard Practice for Making and Testing Reference Glass-Metal Bead-Seal
- ASTM F29 Standard Specification for Dumet Wire for Glass-to-Metal Seal Applications
- ASTM E228 Standard Test Method for Linear Thermal Expansion of Solid Materials With a Push- Rod Dilatometer
- ASTM C1793 Standard Guide for Development of Specifications for Fiber Reinforced Silicon Carbide-Silicon Carbide Composite Structures for Nuclear Applications
- ASTM D7542 Standard Test Method for Air Oxidation of Carbon and Graphite in the Kinetic Regime
- ASTM D7542 Standard Test Method for Air Oxidation of Carbon and Graphite in the Kinetic Regime
- ASTM C1793 Standard Guide for Development of Specifications for Fiber Reinforced Silicon Carbide-Silicon Carbide Composite Structures for Nuclear Applications
- ASTM E228 Standard Test Method for Linear Thermal Expansion of Solid Materials With a Push- Rod Dilatometer
- ASTM F29 Standard Specification for Dumet Wire for Glass-to-Metal Seal Applications
- ASTM F14 Standard Practice for Making and Testing Reference Glass-Metal Bead-Seal
- ASTM F218 Standard Test Method for Measuring Optical Retardation and Analyzing Stress in Glass
- ASTM F144 Standard Practice for Making Reference Glass-Metal Sandwich Seal and Testing for Expansion Characteristics by Polarimetric Methods
- ASTM F218 Standard Test Method for Measuring Optical Retardation and Analyzing Stress in Glass
- ASTM F14 Standard Practice for Making and Testing Reference Glass-Metal Bead-Seal
- ASTM F29 Standard Specification for Dumet Wire for Glass-to-Metal Seal Applications
- ASTM E228 Standard Test Method for Linear Thermal Expansion of Solid Materials With a Push- Rod Dilatometer
- ASTM C1793 Standard Guide for Development of Specifications for Fiber Reinforced Silicon Carbide-Silicon Carbide Composite Structures for Nuclear Applications
- ASTM C1793 Standard Guide for Development of Specifications for Fiber Reinforced Silicon Carbide-Silicon Carbide Composite Structures for Nuclear Applications
- ASTM E228 Standard Test Method for Linear Thermal Expansion of Solid Materials With a Push- Rod Dilatometer
- ASTM F29 Standard Specification for Dumet Wire for Glass-to-Metal Seal Applications
- ASTM F14 Standard Practice for Making and Testing Reference Glass-Metal Bead-Seal
- ASTM F218 Standard Test Method for Measuring Optical Retardation and Analyzing Stress in Glass
- ASTM F144 Standard Practice for Making Reference Glass-Metal Sandwich Seal and Testing for Expansion Characteristics by Polarimetric Methods
- ASTM F218 Standard Test Method for Measuring Optical Retardation and Analyzing Stress in Glass
- ASTM F14 Standard Practice for Making and Testing Reference Glass-Metal Bead-Seal
- ASTM F29 Standard Specification for Dumet Wire for Glass-to-Metal Seal Applications
- ASTM E228 Standard Test Method for Linear Thermal Expansion of Solid Materials With a Push- Rod Dilatometer
- ASTM E228 Standard Test Method for Linear Thermal Expansion of Solid Materials With a Push- Rod Dilatometer
- ASTM F29 Standard Specification for Dumet Wire for Glass-to-Metal Seal Applications
- ASTM F14 Standard Practice for Making and Testing Reference Glass-Metal Bead-Seal
- ASTM F218 Standard Test Method for Measuring Optical Retardation and Analyzing Stress in Glass
- ASTM F144 Standard Practice for Making Reference Glass-Metal Sandwich Seal and Testing for Expansion Characteristics by Polarimetric Methods
- ASTM F218 Standard Test Method for Measuring Optical Retardation and Analyzing Stress in Glass
- ASTM F14 Standard Practice for Making and Testing Reference Glass-Metal Bead-Seal
- ASTM F29 Standard Specification for Dumet Wire for Glass-to-Metal Seal Applications
- ASTM F29 Standard Specification for Dumet Wire for Glass-to-Metal Seal Applications
- ASTM F14 Standard Practice for Making and Testing Reference Glass-Metal Bead-Seal
- ASTM F218 Standard Test Method for Measuring Optical Retardation and Analyzing Stress in Glass
- ASTM F144 Standard Practice for Making Reference Glass-Metal Sandwich Seal and Testing for Expansion Characteristics by Polarimetric Methods
- ASTM F218 Standard Test Method for Measuring Optical Retardation and Analyzing Stress in Glass
- ASTM F14 Standard Practice for Making and Testing Reference Glass-Metal Bead-Seal
- ASTM F14 Standard Practice for Making and Testing Reference Glass-Metal Bead-Seal
- ASTM F218 Standard Test Method for Measuring Optical Retardation and Analyzing Stress in Glass
- ASTM F144 Standard Practice for Making Reference Glass-Metal Sandwich Seal and Testing for Expansion Characteristics by Polarimetric Methods
- ASTM F218 Standard Test Method for Measuring Optical Retardation and Analyzing Stress in Glass
- ASTM F218 Standard Test Method for Measuring Optical Retardation and Analyzing Stress in Glass
- ASTM F144 Standard Practice for Making Reference Glass-Metal Sandwich Seal and Testing for Expansion Characteristics by Polarimetric Methods
- ASTM F144 Standard Practice for Making Reference Glass-Metal Sandwich Seal and Testing for Expansion Characteristics by Polarimetric Methods
- ASTM F105 Standard Specification for Type 58 Borosilicate Sealing Glass
- ASTM F140 Standard Practice for Making Reference Glass-Metal Butt Seals and Testing for Expansion Characteristics by Polarimetric Methods
- ASTM F79 Standard Specification for Type 101 Sealing Glass
- ASTM D229 Standard Test Methods for Rigid Sheet and Plate Materials Used for Electrical Insulation
- ASTM C600 Standard Test Method of Thermal Shock Test on Glass Pipe
- Картотека зарубежных и международных стандартов
ASTM International
Standard Test Method for High-Voltage, Low-Current, Dry Arc Resistance of Solid Electrical Insulation
N D495
Annotation
This test method covers, in a preliminary fashion, the differentiation of similar materials' resistance to the action of a high-voltage, low-current arc close to the surface of insulation, when a conducting path is formed causing the material to become conducting due to the localized thermal and chemical decomposition and erosion.
The usefulness of this test method is very severely limited by many restrictions and qualifications, some of which are described in the following paragraphs and in Section 5. Generally, this test method shall not be used in material specifications. Whenever possible, alternative test methods shall be used, and their development is encouraged.
This test method will not, in general, permit conclusions to be drawn concerning the relative arc resistance rankings of materials that are potentially subjected to other types of arcs: for example, high voltage at high currents, and low voltage at low or high currents (promoted by surges or by conducting contaminants).
The test method is intended, because of its convenience and the short time required for testing, for preliminary screening of material, for detecting the effects of changes in formulation, and for quality control testing after correlation has been established with other types of simulated service arc tests and field experience. Because this test method is usually conducted under clean and dry laboratory conditions rarely encountered in practice, it is possible that the prediction of a material's relative performance in typical applications and in varying "clean to dirty" environments will be substantially altered (Note 1). Caution is urged against drawing strong conclusions without corroborating support of simulated service tests and field testing. Rather, this test method is useful for preliminary evaluation of changes in structure and composition without the complicating influence of environmental conditions, especially dirt and moisture.



