ASTM D7439 Standard Test Method for Determination of Elements in Airborne Particulate Matter by Inductively Coupled Plasma-Mass Spectrometry
Данный раздел/документ содержится в продуктах:
- Техэксперт: Машиностроительный комплекс
- Картотека зарубежных и международных стандартов
- ASTM D7202 Standard Test Method for Determination of Beryllium in the Workplace by Extraction and Optical Fluorescence Detection
- 13
- ASTM D2122 Standard Test Method for Determining Dimensions of Thermoplastic Pipe and Fittings
- ASTM F2390 Standard Specification for Poly(Vinyl Chloride) (PVC) Plastic Drain, Waste, and Vent (DWV) Pipe and Fittings Having Post-Industrial Recycle Content
- ASTM F412 Standard Terminology Relating to Plastic Piping Systems
- ASTM D2105 Standard Test Method for Longitudinal Tensile Properties of “Fiberglass” (Glass-Fiber- Reinforced Thermosetting-Resin) Pipe and Tube
- ASTM F412 Standard Terminology Relating to Plastic Piping Systems
- ASTM F2390 Standard Specification for Poly(Vinyl Chloride) (PVC) Plastic Drain, Waste, and Vent (DWV) Pipe and Fittings Having Post-Industrial Recycle Content
- ASTM F2390 Standard Specification for Poly(Vinyl Chloride) (PVC) Plastic Drain, Waste, and Vent (DWV) Pipe and Fittings Having Post-Industrial Recycle Content
- ASTM F412 Standard Terminology Relating to Plastic Piping Systems
- ASTM D2105 Standard Test Method for Longitudinal Tensile Properties of “Fiberglass” (Glass-Fiber- Reinforced Thermosetting-Resin) Pipe and Tube
- ASTM F412 Standard Terminology Relating to Plastic Piping Systems
- ASTM D2105 Standard Test Method for Longitudinal Tensile Properties of “Fiberglass” (Glass-Fiber- Reinforced Thermosetting-Resin) Pipe and Tube
- ASTM E4 Standard Practices for Force Verification of Testing Machines
- ASTM E855 Standard Test Methods for Bend Testing of Metallic Flat Materials for Spring Applications Involving Static Loading
- ASTM E691 Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method
- ASTM D7440 Standard Practice for Characterizing Uncertainty in Air Quality Measurements
- Картотека зарубежных и международных стандартов
ASTM International
Standard Test Method for Determination of Elements in Airborne Particulate Matter by Inductively Coupled Plasma-Mass Spectrometry
N D7439
Annotation
This standard test method specifies a procedure for sample preparation and analysis of airborne particulate matter for the content of metals and metalloids in workplace air samples using inductively coupled plasma–mass spectrometry (ICP-MS). This test method can be used for other air samples provided the user ensures the validity of the test method (by ensuring that appropriate data quality objectives can be achieved).
This standard test method assumes that samples will have been collected in accordance with Test Method D7035.
This standard test method should be used by analysts experienced in the use of ICP-MS, the interpretation of spectral and matrix interferences and procedures for their correction.
This standard test method specifies a number of alternative methods for preparing test solutions from samples of airborne particulate matter. One of the specified sample preparation methods is applicable to the measurement of soluble metal or metalloid compounds. Other specified methods are applicable to the measurement of total metals and metalloids.
It is the user's responsibility to ensure the validity of the standard method for filters of untested matrices.
Table 1 provides a non-exclusive list of metals and metalloids for which one or more of the sample dissolution methods specified in this document is applicable.
This standard test method is not applicable to compounds of metals and metalloids that are present in the gaseous or vapor state.
No detailed operating instructions are provided because of differences among various makes and models of suitable ICP-MS instruments. Instead, the analyst shall follow the instructions provided by the manufacturer of the particular instrument. This test method does not address comparative accuracy of different devices or the precision between instruments of the same make and model.



